Skip to main content
Log in

On the Critical Line of Convex Co-Compact Hyperbolic Surfaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let Γ be a convex co-compact Fuchsian group. We formulate a conjecture on the critical line, i.e. what is the largest half-plane with finitely many resonances for the Laplace operator on the infinite-area hyperbolic surface \({X = \Gamma \backslash \mathbb{H}^2}\). An upper bound depending on the dimension δ of the limit set is proved which is in favor of the conjecture for small values of δ and in the case when δ > 1/2 and Γ is a subgroup of an arithmetic group. New omega lower bounds for the error term in the hyperbolic lattice point counting problem are derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borthwick D.: Spectral Theory of Infinite-Area Hyperbolic Surfaces Progress in Mathematics 256. Birkhäuser Boston Inc., Boston, MA (2007)

    Google Scholar 

  2. Borthwick D., Judge C., Perry P.A.: Selberg’s zeta function and the spectral geometry of geometrically finite hyperbolic surfaces. Comment. Math. Helv. 80(3), 483–515 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourgain J., Kontorovich A.: On representations of integers in thin subgroups of SL2(Z). Geom. Funct. Anal. 20(5), 1144–1174 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain, A. Gamburd, P. Sarnak, Generalization of Selberg’s 3/16 theorem and affine sieve. preprint (2009); arXiv.

  5. Bowen L.: Free groups in lattices. Geom. Topol. 13(5), 3021–3054 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen R.: Hausdorff dimension of quasicircles. Inst. Hautes Études Sci. Publ. Math. 50, 11–25 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christiansen T., Zworski M.: Resonance wave expansions: two hyperbolic examples. Comm. Math. Phys. 212(2), 323–336 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gamburd A.: On the spectral gap for infinite index "congruence" subgroups of SL2(Z). Israel J. Math. 127, 157–200 (2002)

    Article  MathSciNet  Google Scholar 

  9. Guillarmou C., Naud F.: Wave 0-trace and length spectrum on convex co-compact hyperbolic manifolds. Comm. Anal. Geom. 14(5), 945–967 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Guillarmou C., Naud F.: Wave decay on convex co-compact hyperbolic manifolds. Comm. Math. Phys. 287(2), 489–511 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillopé L., Lin K., Zworski M.: The Selberg zeta function for convex co-compact Schottky groups. Comm. Math. Phys. 245(1), 149–176 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guillopé L., Zworski M.: Upper bounds on the number of resonances for non-compact Riemann surfaces. J. Funct. Anal. 129(2), 364–389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guillopé L., Zworski M.: Scattering asymptotics for Riemann surfaces. Ann. of Math. (2) 145(3), 597–660 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guillopé L., Zworski M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9(6), 1156–1168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Katok S.: Fuchsian Groups. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL (1992)

    Google Scholar 

  16. Lalley S.P.: Renewal theorems in symbolic dynamics, with applications to geodesic flows, non-Euclidean tessellations and their fractal limits. Acta Math. 163(1-2), 1–55 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lax P.D., Phillips R.S.: The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces. J. Funct. Anal. 46, 280–350 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.D. Lax, R.S. Phillips, Translation representation for automorphic solutions of the non-Euclidean wave equation I, II, III. Comm. Pure. Appl. Math. 37/38 (1984/5), 303–328, 779–813, 179–208.

  19. Luo W., Sarnak P.: Number variance for arithmetic hyperbolic surfaces. Comm. Math. Phys. 161(2), 419–432 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mazzeo R.R., Melrose R.B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Naud F.: Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sci. École Norm. Sup. (4) 38(1), 116–153 (2005)

    MathSciNet  MATH  Google Scholar 

  22. F. Naud, Heat kernels and the rate of mixing of compact extensions of expanding maps, preprint (2010)

  23. Patterson S.J.: The limit set of a Fuchsian group. Acta Math. 136(3-4), 241–273 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  24. Patterson S.J., Perry P.A.: The divisor of Selberg’s zeta function for Kleinian groups. Duke Math. J. 106(2), 321–390 (2001) Appendix A by Charles Epstein.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ruelle D.: Zeta-functions for expanding maps and Anosov flows. Invent. Math. 34(3), 231–242 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Selberg, Remarks on the distribution of poles of Eisenstein series, In “Festschrift in Honor of I.I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II” (Ramat Aviv, 1989), Israel Math. Conf. Proc. 3, Weizmann Press, Jerusalem (1990), 251–278.

  27. Takeuchi K.: A characterization of arithmetic Fuchsian groups. J. Math. Soc. Japan 27(4), 600–612 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. E.C. Titchmarsh, The Theory of Functions, Oxford University Press, second edition, 1932.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Jakobson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakobson, D., Naud, F. On the Critical Line of Convex Co-Compact Hyperbolic Surfaces. Geom. Funct. Anal. 22, 352–368 (2012). https://doi.org/10.1007/s00039-012-0154-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0154-y

Keywords and phrases

2010 Mathematics Subject Classification

Navigation