Abstract
We give a lower and an upper bound for the conformal dimension of the boundaries of certain small cancellation groups.
We apply these bounds to the few relator and density models for random groups. This gives generic bounds of the following form, where l is the relator length, going to infinity.
-
(a)
\({1 + 1/C < \mathcal{C}{\rm dim}(\partial_{\infty}G) < Cl/{\rm log}(l)}\) , for the few relator model, and
-
(b)
\({1 + l/(C\, {\rm log}(l)) < \mathcal{C}{\rm dim}(\partial_{\infty}G) < Cl}\) , for the density model, at densities d < 1/16.
In particular, for the density model at densities d < 1/16, as the relator length l goes to infinity, the random groups will pass through infinitely many different quasi-isometry classes.
Similar content being viewed by others
References
G.N. Arzhantseva, A.Yu. Ol′shanskiĭ, Generality of the class of groups in which subgroups with a lesser number of generators are free, Mat. Zametki 59:4 (1996), 489-496, 638.
Bonk M., Foertsch T.: Asymptotic upper curvature bounds in coarse geometry. Math. Z. 253(4), 753–785 (2006)
Bourdon M.: Au bord de certains polyèdres hyperboliques. Ann. Inst. Fourier (Grenoble) 45(1), 119–141 (1995)
Bourdon M.: Immeubles hyperboliques, dimension conforme et rigidité de Mostow. Geom. Funct. Anal. 7(2), 245–268 (1997)
Bridson M.R., Haefliger A.: Metric Spaces of Non-Positive Curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 319. Springer-Verlag, Berlin (1999)
Champetier C.: Propriétés statistiques des groupes de présentation finie. Adv. Math. 116(2), 197–262 (1995)
Coornaert M.: Mesures de Patterson-Sullivan sur le bord d’un espace hyperbolique au sens de Gromov. Pacific J. Math. 159(2), 241–270 (1993)
F. Dahmani, V. Guirardel, P. Przytycki, Random groups do not split, Math. Ann., to appear.
É. Ghys, Groupes aléatoires (d’aprés Misha Gromov,. . .), Astérisque (294):viii (2004), 173-204.
M. Gromov, Hyperbolic groups, in “Essays in Group Theory”, Math. Sci. Res. Inst. Publ. 8, Springer, New York (1987), 75-263.
M. Gromov, Asymptotic invariants of infinite groups, in “Geometric Group Theory 2 (Sussex, 1991),” London Math. Soc. Lecture Note Ser. 182 Cambridge Univ. Press, Cambridge (1993), 1-295.
Heinonen J.: Lectures on Analysis on Metric Spaces. Universitext. Springer-Verlag, New York (2001)
Kapovich I., Schupp P.: Genericity, the Arzhantseva-Ol′shanskii method and the isomorphism problem for one-relator groups. Math. Ann. 331(1), 1–19 (2005)
Kapovich I., Schupp P., Shpilrain V.: Generic properties of Whitehead’s algorithm and isomorphism rigidity of random one-relator groups. Pacific J. Math. 223(1), 113–140 (2006)
B. Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in “International Congress of Mathematicians II, Eur. Math. Soc., Zürich (2006), 743-768.
Lyndon R.C., Schupp P.E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 89. Springer-Verlag, Berlin (1977)
Mackay J.M.: Spaces and groups with conformal dimension greater than one. Duke Math. J. 153(2), 211–227 (2010)
Mackay J.M., Tyson J.T.: Conformal Dimension: Theory and Application, University Lecture Series 54. American Mathematical Society, Providence: RI (2010)
Y. Ollivier, A January 2005 Invitation to Random Groups, Ensaios Matemáticos [Mathematical Surveys] 10, Sociedade Brasileira de Matemática, Rio de Janeiro (2005).
Ollivier Y.: Growth exponent of generic groups. Comment. Math. Helv. 81(3), 569–593 (2006)
Ollivier Y.: Some small cancellation properties of random groups. Internat. J. Algebra Comput. 17(1), 37–51 (2007)
Ollivier Y., Wise D.T.: Cubulating random groups at density less than 1/6. Trans. Amer. Math. Soc. 363, 4701–4733 (2011)
Pansu P.: Dimension conforme et sphère à à l’infini des variétés á courbure négative. Ann. Acad. Sci. Fenn. Ser. A I Math. 14(2), 177–212 (1989)
Paulin F.: Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc. (2) 54(1), 50–74 (1996)
Shukhov A.G.: On the dependence of the growth exponent on the length of the defining relation. Mat. Zametki 65(4), 612–618 (1999)
Strebel R.: Appendix, Small cancellation groups, in “Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988)”. Birkhäuser Progr. Math. 83, 227–273 (1990)
Tukia P., Väisälä J.: embeddings of metric spaces. Ann. Acad. Sci. Fenn. Ser. A I Math. 5(1), 97–114 (1980)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mackay, J.M. Conformal Dimension And Random Groups. Geom. Funct. Anal. 22, 213–239 (2012). https://doi.org/10.1007/s00039-012-0153-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-012-0153-z