Skip to main content
Log in

Local Symmetry of Harmonic Spaces as Determined by The Spectra of Small Geodesic Spheres

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We show that in any harmonic space, the eigenvalue spectra of the Laplace operator on small geodesic spheres around a given point determine the norm \({{|\nabla{R}|}}\) of the covariant derivative of the Riemannian curvature tensor in that point. In particular, the spectra of small geodesic spheres in a harmonic space determine whether the space is locally symmetric. For the proof we use the first few heat invariants and consider certain coefficients in the radial power series expansions of the curvature invariants |R|2 and |Ric|2 of the geodesic spheres. Moreover, we obtain analogous results for geodesic balls with either Dirichlet or Neumann boundary conditions. We also comment on the relevance of these results to constructions of Z.I. Szabó.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berndt, F. Tricerri, L. Vanhecke, Generalized Heisenberg Groups and Damek–Ricci Harmonic Spaces, Springer Lecture Notes in Mathematics 1598 (1995).

  2. Besse A.Ł.: Manifolds all of Whose Geodesics are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete 93. Springer-Verlag, Berlin/New York (1978)

    Google Scholar 

  3. Branson T., Gilkey P.B.: The asymptotics of the Laplacian on a manifold with boundary. Comm. Partial Differential Equations 15(2), 245–272 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen B.-Y., Vanhecke L.: Differential geometry of geodesic spheres. J. Reine Angew. Math, 325, 28–67 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Copson E.T., Ruse H.S.: Harmonic Riemannian spaces. Proc. Roy. Soc. Edinburgh 60, 117–133 (1940)

    MathSciNet  Google Scholar 

  6. Damek E., Ricci F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Amer. Math. Soc. (N.S.). 27(1), 139–142 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. DeTurck D., Kazdan J.: Some regularity theorems in Riemannian geometry. Ann. scient. Éc. Norm. Sup. (4) 14, 249–260 (1981)

    MathSciNet  Google Scholar 

  8. H. Fürstenau, Über Isospektralität von topologischen Bällen, Diploma Thesis, Universität Bonn, 2006.

  9. P. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Mathematics Lecture Series 11, Publish or Perish, Wilmington, Del., 1984.

  10. Gordon C.: Survey of isospectral manifolds, Handbook of differential geometry, Vol I, pp. 747–778. North-Holland, Amsterdam (2000)

    Book  Google Scholar 

  11. Gordon C.: Isospectral deformations of metrics on spheres. Invent. Math. 145, 317–331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gray A., Vanhecke L.: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142(3-4), 157–198 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lichnerowicz A.: Sur les espaces Riemanniens complètement harmoniques. Bull. Soc. Math. France 72, 146–168 (1944)

    MathSciNet  MATH  Google Scholar 

  14. Lichnerowicz A.: Géométrie des groupes de transformations. Dunod, Paris (1958)

    MATH  Google Scholar 

  15. Nicolodi L., Vanhecke L.: The geometry of k-harmonic manifolds. Adv. Geom. 6(1), 53–70 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.S. Ruse, A.G. Walker, T.J. Willmore, Harmonic Spaces, Consiglio Nazionale delle Ricerche, Monografie Matematice 8, Rome (1961).

  17. Sakai T.: On eigen-values of Laplacian and curvature of Riemannian manifolds. Tôhoku Math. J. (2) 23, 589–603 (1971)

    Article  Google Scholar 

  18. Szabó Z.I.: The Lichnerowicz conjecture on harmonic manifolds. J. Differential Geom. 31(1), 1–28 (1990)

    MathSciNet  MATH  Google Scholar 

  19. Szabó Z.I.: Locally non-isometric yet super isospectral spaces. Geom. Funct. Anal. 9(1), 185–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Szabó Z.I.: Isospectral pairs of metrics on balls, spheres, and other manifolds with different local geometries. Ann. of Math. (2) 154(2), 437–475 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Szabó Z.I.: A cornucopia of isospectral pairs of metrics on spheres with different local geometries. Ann. of Math. (2) 161(1), 343–395 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Watanabe Y.: On the characteristic function of harmonic Kählerian spaces. Tôhoku Math. J. (2) 27, 13–24 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Arias-Marco.

Additional information

Dorothee Schueth would like to dedicate this article to her former high-school teacher, Martin Berg. It was he who first made her see the beauty of Mathematics.

The authors were partially supported by DFG Sonderforschungsbereich 647. The first author’s work has also been supported by D.G.I. (Spain) and FEDER Project MTM2010-15444, by Junta de Extremadura and FEDER funds, and the program “Estancias de movilidad en el extranjero ‘José Castillejo’ para jóvenes doctores” of the Ministry of Education (Spain).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias-Marco, T., Schueth, D. Local Symmetry of Harmonic Spaces as Determined by The Spectra of Small Geodesic Spheres. Geom. Funct. Anal. 22, 1–21 (2012). https://doi.org/10.1007/s00039-012-0146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0146-y

Keywords and phrases

2010 Mathematics Subject Classification

Navigation