Skip to main content
Log in

Localization for Involutions in Floer Cohomology

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We consider Lagrangian Floer cohomology for a pair of Lagrangian submanifolds in a symplectic manifold M. Suppose that M carries a symplectic involution, which preserves both submanifolds. Under various topological hypotheses, we prove a localization theorem for Floer cohomology, which implies a Smith-type inequality for the Floer cohomology groups in M and its fixed point set. Two applications to symplectic Khovanov cohomology are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arbarello, M. Cornalba, P. Griffith, J. Harris, Geometry of Algebraic Curves, Vol. I, Springer, 1985.

  2. G. Bredon, Introduction to Compact Transformation Groups, Academic Press, 1972.

  3. R. Cohen, J. Jones and G. Segal, Floer’s infinite-dimensional Morse theory and homotopy theory, in “The Floer Memorial Volume”, Progr. Math. 133, Birkhäuser (1995), 297–325.

  4. S. Donaldson, Floer Homology Groups in Yang–Mills Theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002).

  5. K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Floer Theory – Anomaly and Obstruction, American Math. Soc., 2009.

  6. Hutchings M.: Floer homology of families I. Algebr. Geom. Topol. 8, 435–492 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Jones J.: Cyclic homology and equivariant homology. Invent. Math. 87, 403–423 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  8. Khovanov M.: A categorification of the Jones polynomial. Duke Math. J. 101(3), 359–426 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Khovanov M., Seidel P.: Quivers, Floer cohomology, and braid group actions. J. Amer. Math. Soc. 15, 203–271 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Kronheimer, T. Mrowka, Monopoles and Three-Manifolds, Cambridge University Press, 2008.

  11. Lee D., Lipshitz R.: Covering spaces and \({\mathbb{Q}}\)-gradings on Heegaard Floer homology. J. Symplectic Geom. 6, 33–59 (2008)

    MATH  MathSciNet  Google Scholar 

  12. W. Lickorish, An Introduction to Knot Theory, Springer-Verlag, 1997.

  13. Macdonald I.: Symmetric products of an algebraic curve. Topology 1, 319–343 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  14. Manolescu C.: Nilpotent slices, Hilbert schemes, and the Jones polynomial. Duke Math. J. 132, 311–369 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Manolescu, B. Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. Art. ID rnm077, 21 pp. (2007).

  16. D. Mumford, Tata Lectures on Theta, Vol. II. Birkhäuser, 1984.

  17. Ozsváth P., Szabó Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. of Math. (2) 159(3), 1159–1245 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ozsváth P., Szabó Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2) 159(3), 1027–1158 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ozsváth P., Szabó Z.: Holomorphic triangles and invariants for smooth fourmanifolds. Adv. Math. 202, 326–400 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ozsváth P., Szabó Z.: On the Heegaard Floer homology of branched doublecovers. Adv. Math. 194, 1–33 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Perutz, Hamiltonian handleslides for Heegaard Floer homology, Proc. 14th Gökova Geometry-Topology Conference (2007), GGT (2008).

  22. M. Pozniak, Floer homology, Novikov rings and clean intersections, Northern California Symplectic Geometry Seminar, Amer. Math. Soc. (1999), 119–181.

  23. A. Pressley, G.B. Segal, Loop Groups, Oxford University Press, 1986.

  24. R. Rezazadegan, Pseudoholomorphic quilts and Khovanov homology, preprint, 2009; arXiv:0912.0669

  25. Sakuma M.: Uniqueness of symmetries of knots. Math. Zeit. 192, 225–242 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Seidel, Fukaya Categories and Picard-Lefschetz Theory, European Math. Soc. Publishing House, 2008.

  27. Seidel P., Smith I.: A link invariant from the symplectic geometry of nilpotent slices. Duke Math. J. 134, 453–514 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Seidel, I. Smith, Symplectic Geometry of the Adjoint Quotient, I-II, Lectures at MSRI, April 2004.

  29. P. Smith, Transformations of finite period, I-III, Ann. of Math., (I) 39 (1938), 127–164; (II) 40 (1940), 690-711; (III) 42 (1941), 446–458.

  30. Varouchas J.: Stabilité de la classe des variétés Kählériennes par certains morphismes propres. Invent. Math. 77, 117–127 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Varouchas J.: Kähler spaces and proper open morphisms. Math. Ann. 283, 13–52 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Viterbo C.: Functors and computations in Floer homology with applications, Part I. Geom. Funct. Anal. 9, 985–1033 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. J. Waldron, An invariant of link cobordisms from symplectic Khovanov homology, preprint; arXiv:0912.5067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seidel, P., Smith, I. Localization for Involutions in Floer Cohomology. Geom. Funct. Anal. 20, 1464–1501 (2010). https://doi.org/10.1007/s00039-010-0099-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0099-y

Keywords and phrases

2010 Mathematics Subject Classification

Navigation