Skip to main content
Log in

Inverse Spectral Problem for Analytic \({{(\mathbb{Z}/2 \mathbb{Z})^{n}}}\) -Symmetric Domains in \({{\mathbb{R}^{n}}}\)

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We prove that bounded real analytic domains in \({\mathbb{R}^{n}}\), with the symmetries of an ellipsoid and with one axis length fixed, are determined by their Dirichlet or Neumann eigenvalues among other bounded real analytic domains with the same symmetries and axis length. Some non-degeneracy conditions are also imposed on the class of domains. It follows that bounded, convex analytic domains are determined by their spectra among other such domains. This seems to be the first positive result for the well-known Kac problem, “Can one hear the shape of a drum?”, in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrova I. (2008) Semi-classical wavefront set and Fourier integral operators. Canad. J. Math. 60(2): 241–263

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso D., Gaspard P. (1993) \({{\hbar}}\) expansion for the periodic orbit quantization of chaotic systems. Chaos 3(4): 601–612

    Article  MathSciNet  Google Scholar 

  3. Andersson K.G., Melrose R.B. (1977) The propagation of singularities along gliding rays. Invent. Math. 41(3): 97–232

    Article  MathSciNet  Google Scholar 

  4. S. Axelrod, Overview and warmup example for perturbation theory with instantons, Geometry and Physics (Aarhus, 1995), Lecture Notes in Pure and Appl. Math., 184, Dekker, New York (1997), 321–338.

  5. Babic V.M., Buldyrev V.S. (1991) Short-Wavelength Diffraction Theory, Springer Series on Wave Phenomena 4. Springer-Verlag, New York

    Google Scholar 

  6. Balian R., Bloch C. (1970) Distribution of eigenfrequencies for the wave equation in a finite domain I: three-dimensional problem with smooth boundary surface. Ann. Phys. 60: 401–447

    Article  MATH  MathSciNet  Google Scholar 

  7. Balian R., Bloch C. (1972) Distribution of eigenfrequencies for the wave equation in a finite domain, III Eigenfrequency density oscillations. Ann. Physics 69: 76–160

    Article  MATH  MathSciNet  Google Scholar 

  8. Cardoso F., Popov G. (2002) Quasimodes with exponentially small errors associated with elliptic periodic rays, Asymptot. Anal. 30(3-4): 217–247

    MATH  MathSciNet  Google Scholar 

  9. J. Chazarain, Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1213–A1215.

  10. Christiansen T. (2009) Sojourn times, manifolds with infinite cylindrical ends, and an inverse problem for planar waveguides. J. Anal. Math. 107: 79–106

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. Colin de Verdière, Sur les longuers des trajectoires periodiques d’un billard, in “Geometrie Symplectique et de Contact: Autour du Théorème de Poincaré- Birkhoff, Travaux en Cours, Sem. Sud-Rhodanien de Geometrie III” (P. Dazord, N. Desolneux-Moulis, eds.), Herman, Paris (1984), 122–139.

  12. Y. Colin de Verdière, V. Guillemin, A semi-classical inverse problem I: Taylor expansions, arXiv:0802.1605

  13. P. Etingof, Lecture Notes on Quantum Field Theory, MIT OpenCourseWare.

  14. L.C. Evans, M. Zworski, Lectures on semiclassical analysis, Lecture notes, available at http://math.berkeley.edu/zworski/semiclassical.pdf

  15. D. Fried, Cyclic resultants of reciprocal polynomials. Holomorphic dynamics (Mexico, 1986), Springer Lecture Notes in Math. 1345 (1988), 124–128.

  16. Ghomi M. (2004) Shortest periodic billiard trajectories in convex bodies. Geom. Funct. Anal. 14(2): 295–302

    Article  MATH  MathSciNet  Google Scholar 

  17. Gordon C.S., Szabo Z.I. (2002) Isospectral deformations of negatively curved Riemannian manifolds with boundary which are not locally isometric. Duke Math. J. 113(2): 355–383

    Article  MATH  MathSciNet  Google Scholar 

  18. Gordon C.S., Webb D.L. (1994) Isospectral convex domains in Euclidean space. Math. Res. Lett. 1(5): 539–545

    MATH  MathSciNet  Google Scholar 

  19. Gordon C., Webb D., Wolpert S. (1992) Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110(1): 1–22

    Article  MATH  MathSciNet  Google Scholar 

  20. Guillemin V. (1996) Wave trace invariants. Duke Math. J. 83: 287–352

    Article  MATH  MathSciNet  Google Scholar 

  21. Guillemin V. (1993) Wave trace invariants and a theorem of Zelditch. Int. Math. Res. Not. 12: 303–308

    Article  MathSciNet  Google Scholar 

  22. Guillemin V., Melrose R.B. (1979) The Poisson summation formula for manifolds with boundary. Adv. in Math. 32: 204–232

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Guillemin, S. Sternberg, Geometric Asymptotics. Mathematical Surveys 14. American Mathematical Society, Providence, R.I., 1977.

  24. Guillemin V., Uribe A. (2007) Some inverse spectral results for semi-classical Schrödinger operators. Math. Res. Lett. 14(4): 623–632

    MATH  MathSciNet  Google Scholar 

  25. Hassell A., Zelditch S. (2004) Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys. 248(1): 119–168

    Article  MATH  MathSciNet  Google Scholar 

  26. Hezari H. (2009) Inverse spectral problems for Schrödinger operators. Comm. Math. Phys. 288(3): 1061–1088

    Article  MATH  MathSciNet  Google Scholar 

  27. L. Hörmander, he Analysis of Linear Partial Differential Operators, Volumes I–IV, Springer-Verlag Berlin Heidelberg, 1983.

  28. Iantchenko A., Sjöstrand J., Zworski M. (2002) Birkhoff normal forms in semiclassical inverse problems. Math. Res. Lett. 9(2-3): 337–362

    MATH  MathSciNet  Google Scholar 

  29. M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73:4:II (1966),1–23.

    Google Scholar 

  30. V.V. Kozlov, D.V. Treshchev, Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts, Translations of Math. Monographs 89, AMS Publications, Providence, R.I. (1991).

  31. Lazutkin V.F. (1968) Construction of an asymptotic series of eigenfunctions of the “bouncing ball” type. Proc. Steklov Inst. Math. 95: 125–140

    MATH  MathSciNet  Google Scholar 

  32. V.F. Lazutkin, D.Ya. Terman, Number of quasimodes of ‘bouncing ball’ type, J. Soviet Math. (1984), 373–379.

  33. V.M. Petkov, L.N. Stoyanov, Geometry of Reflecting Rays and Inverse Spectral Problems, John Wiley and Sons, NY, 1992.

  34. Sjöstrand J., Zworski M. (2002) Quantum monodromy and semi-classical trace formulae. J. Math. Pures Appl. 81(1): 1–33

    Article  MATH  MathSciNet  Google Scholar 

  35. M.E. Taylor, Partial Differential Equations, I–II, Appl. Math. Sci., Springer-Verlag (1996), 115–116.

  36. Urakawa H. (1982) Bounded domains which are isospectral but not congruent. Ann. Sci. École Norm. Sup. 15(3): 441–456

    MATH  MathSciNet  Google Scholar 

  37. Zelditch S. (1997) Wave invariants at elliptic closed geodesics. Geom. Funct. Anal. 7(1): 145–213

    Article  MATH  MathSciNet  Google Scholar 

  38. Zelditch S. (2000) Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10(3): 628–677

    Article  MATH  MathSciNet  Google Scholar 

  39. Zelditch S. (2009) Inverse spectral problem for analytic domains II: domains with one symmetry. Ann. of Math. (2) 170(1): 205–269

    Article  MATH  MathSciNet  Google Scholar 

  40. Zelditch S. (2004) Inverse spectral problem for analytic domains. I. Balian–Bloch trace formula. Comm. Math. Phys. 248(2): 357–407

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Zelditch, Inverse resonance problem for \({\mathbb{Z}_{2}}\) -symmetric analytic obstacles in the plane. Geometric Methods in Inverse Problems and PDE Control, IMA Vol. Math. Appl. 137, Springer, New York (2004). 289–321.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Zelditch.

Additional information

Research partially supported by NSF grant #DMS-06-03850. S.Z. partially supported by NSF grant # DMS-0904252.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hezari, H., Zelditch, S. Inverse Spectral Problem for Analytic \({{(\mathbb{Z}/2 \mathbb{Z})^{n}}}\) -Symmetric Domains in \({{\mathbb{R}^{n}}}\) . Geom. Funct. Anal. 20, 160–191 (2010). https://doi.org/10.1007/s00039-010-0059-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0059-6

Keywords and phrases

2010 Mathematics Subject Classification

Navigation