Abstract
We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier–McCann’s theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows us to write a weak form of the Monge–Ampère equation.
Similar content being viewed by others
References
Agrachev A.: Compactness for sub-Riemannian length-minimizers and subanalyticity, Control Theory and its Applications (Grado, 1998). Rend. Sem. Mat. Univ. Politec. Torino 56(4), 1–12 (2001)
Agrachev A.: Any sub-Riemannian metric has points of smoothness. Russian Math. Dokl. 79, 1–3 (2009)
A. Agrachev, P. Lee, Optimal transportation under nonholonomic constraints, Trans. Amer. Math. Soc. 361:11 (2009), 6019–6047.
A. Agrachev, Y. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences 87, Control Theory and Optimization, II, Springer-Verlag, Berlin, 2004.
Agrachev A., Sarychev A.: Sub-Riemannian metrics: minimality of singular geodesics versus subanalycity. ESAIM Control Optim. Calc. Var. 4, 377–403 (1999)
G. Alberti, L. Ambrosio, A geometrical approach to monotone functions in \({\mathbb{R}^{n}}\), Math. Z. 230:2 (1999), 259–316.
L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability Measures, Lectures in Mathematics, ETH Zurich, Birkhäuser, 2005.
L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208:2 (2004), 261–301.
A. Bellaïche, The tangent space in sub-Riemannian geometry, in “Sub- Riemannian Geometry”, Birkhäuser (1996), 1–78.
P. Bernard, B. Buffoni, Optimal mass transportation and Mather theory, J. Eur. Math. Soc. 9:1 (2007), 85–121.
U. Boscain, F. Rossi, Invariant Carnot–Carathéodory metrics on S 3, SO(3), SL(2) and Lens spaces, preprint (2007).
Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)
P. Cannarsa, L. Rifford, Semiconcavity results for optimal control problems admitting no singular minimizing controls, Ann. Inst. H. Poincaré Non Linéaire 25:4 (2008), 773–802.
P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, 58. Birkhäuser Boston Inc., Boston, MA (2004).
Y. Chitour, F. Jean, E. Trélat, Genericity results for singular curves, J. Diff. Geom. 73:1 (2006), 45–73.
Y. Chitour, F. Jean, E. Trélat, Singular trajectories of control-affine systems, SIAM J. Control Optim. 47:2 (2008), 1078–1095.
Chow W.L.: Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung. Math. Ann. 117, 98–105 (1939)
F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, P.R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics 178. Springer-Verlag, New York (1998).
D. Cordero-Erausquin, R. McCann, M. Schmuckenschlaeger, A Riemannian interpolation inequality a la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), 219–257.
A. Fathi, Weak KAM Theorem and Lagrangian Dynamics, Cambridge University Press, to appear.
A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds, Israel J. Math., to appear.
Federer H.: Geometric Measure Theory. Die Grundlehren des mathematischen Wissenschaften, Band 153. Springer-Verlag (1969)
A. Figalli, Existence, uniqueness, and regularity of optimal transport maps, SIAM Journal of Math. Anal. 39:1 (2007), 126–137.
A. Figalli, N. Juillet, Absolute continuity of Wasserstein geodesics in the Heisenberg group, J. Funct. Anal. 255:1 (2008), 133–141.
Kantorovich L.V.: On the transfer of masses. Dokl. Akad. Nauk. SSSR 37, 227–229 (1942)
Kantorovich L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)
W. Liu, H.J. Sussmann, Shortest paths for sub-Riemannian metrics on rank-2 distributions, Mem. Amer. Math. Soc. 118:564 (1995).
McCann R.: Polar factorization of maps in Riemannian manifolds. Geom. Funct. Anal. 11, 589–608 (2001)
R. Montgomery, Abnormal minimizers, SIAM J. Control Optim. 32:6 (1994), 1605–1620.
R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs 91, American Mathematical Society, Providence, RI (2002).
R. Monti, F. Serra Cassano, Surface measures in Carnot–Carathéodory spaces, Calc. Var. Partial Differential Equations 13:3 (2001), 339–376.
Rashevsky P.K.: About connecting two points of a completely nonholonomic space by admissible curve. Uch. Zapiski Ped. Inst. Libknechta 2, 83–94 (1938)
L. Rifford, Nonholonomic Variations: An Introduction to Subriemannian Geometry, monograph, in progress.
L. Rifford, E. Trélat, Morse–Sard type results in sub-Riemannian geometry, Math. Ann. 332:1 (2005), 145–159.
L. Rifford, E. Trélat, On the stabilization problem for nonholonomic distributions, J. Eur. Math. Soc. 11:2 (2009), 223–255.
H.J. Sussmann, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers, in “Sub-Riemannian Geometry, Birkhäuser (1996), 341–364.
C. Villani, Topics in Mass Transportation, Graduate Studies in Mathematics Surveys 58, American Mathematical Society, Providence, RI (2003).
Villani C.: Optimal Transport. Old and New, Grundlehren des mathematischen Wissenschaften 338. Springer-Verlag, Berlin (2009)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Figalli, A., Rifford, L. Mass Transportation on Sub-Riemannian Manifolds. Geom. Funct. Anal. 20, 124–159 (2010). https://doi.org/10.1007/s00039-010-0053-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00039-010-0053-z