Skip to main content

Advertisement

Log in

A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality

  • Review
  • Published:
International Journal of Public Health

Abstract

Objectives

This study aimed to review the types and applications of fully Bayesian (FB) spatial–temporal models and covariates used to study cancer incidence and mortality.

Methods

This systematic review searched articles published within Medline, Embase, Web-of-Science and Google Scholar between 2014 and 2018.

Results

A total of 38 studies were included in our study. All studies applied Bayesian spatial–temporal models to explore spatial patterns over time, and over half assessed the association with risk factors. Studies used different modelling approaches and prior distributions for spatial, temporal and spatial–temporal interaction effects depending on the nature of data, outcomes and applications. The most common Bayesian spatial–temporal model was a generalized linear mixed model. These models adjusted for covariates at the patient, area or temporal level, and through standardization.

Conclusions

Few studies (4) modelled patient-level clinical characteristics (11%), and the applications of an FB approach in the forecasting of spatial–temporally aligned cancer data were limited. This review highlighted the need for Bayesian spatial-temporal models to incorporate patient-level prognostic characteristics through the multi-level framework and forecast future cancer incidence and outcomes for cancer prevention and control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PRISMA:

Preferred reporting items for systematic review and meta-analysis

PQL:

Penalized quasi-likelihood

EB:

Empirical Bayes

FB:

Fully Bayesian

MCMC:

Markov chain Monte Carlo

INLA:

Integrated nested Laplace approximations

IQR:

Interquartile range

GLMM:

Generalized linear mixed models

CAR:

Conditional autoregressive

BYM:

Besag, York and Mollie

APC:

Age–period cohort

AFT:

Accelerated failure time

ANOVA:

Analysis of variance

SLA:

Second-level area

ESM:

Electronic supplementary material

References

  • Adin A, Martínez-Beneito M, Botella-Rocamora P et al (2017) Smoothing and high risk areas detection in space–time disease mapping: a comparison of P-splines, autoregressive, and moving average models. Stoch Env Res Risk Assess 31:403–415

    Article  Google Scholar 

  • Austin PC, Brunner LJ, Hux Md Sm JE (2002) Bayeswatch: an overview of Bayesian statistics. J Eval Clin Pract 8:277–286

    Article  Google Scholar 

  • Banerjee S, Dey DK (2005) Semiparametric proportional odds models for spatially correlated survival data. Lifetime Data Anal 11:175–191

    Article  Google Scholar 

  • Bennett JE, Li G, Foreman K et al (2015) The future of life expectancy and life expectancy inequalities in England and Wales: Bayesian spatiotemporal forecasting. Lancet (London, England) 386:163–170. https://doi.org/10.1016/s0140-6736(15)60296-3

    Article  Google Scholar 

  • Bernardinelli L, Clayton D, Pascutto C et al (1995) Bayesian analysis of space–time variation in disease risk. Stat Med 14:2433–2443

    Article  CAS  Google Scholar 

  • Besag J, York J, Mollié A (1991) Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43:1–20

    Article  Google Scholar 

  • Cancer Research UK (2019) Worldwide cancer incidence statistics. https://www.cancerresearchuk.org/health-professional/cancer-statistics/worldwide-cancer/incidence#heading-One. Accessed 25 Apr 2020

  • Carroll R, Zhao S (2018) Trends in colorectal cancer incidence and survival in Iowa SEER data: the timing of it all. Clin Colorectal Cancer 18:e261–e274

    Article  Google Scholar 

  • Carroll R, Lawson AB, Faes C et al (2016) Spatio-temporal Bayesian model selection for disease mapping. Environmetrics 27:466–478. https://doi.org/10.1002/env.2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll R, Lawson AB, Faes C et al (2017a) Extensions to multivariate space time mixture modeling of small area cancer data. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14050503

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll R, Lawson AB, Kirby RS et al (2017b) Space–time variation of respiratory cancers in South Carolina: a flexible multivariate mixture modeling approach to risk estimation. Ann Epidemiol 27:42–51. https://doi.org/10.1016/j.annepidem.2016.08.014

    Article  PubMed  Google Scholar 

  • Carroll R, Lawson AB, Zhao S (2018) Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping. Biostatistics (Oxford, England) 20:666–680. https://doi.org/10.1093/biostatistics/kxy023

    Article  Google Scholar 

  • Choi J, Lawson AB (2018) A Bayesian two-stage spatially dependent variable selection model for space–time health data. Stat Methods Med Res. https://doi.org/10.1177/0962280218767980

    Article  PubMed  Google Scholar 

  • Cramb SM, Baade PD, White NM et al (2015) Inferring lung cancer risk factor patterns through joint Bayesian spatio-temporal analysis. Cancer Epidemiol 39:430–439

    Article  Google Scholar 

  • Cramb SM, Mengersen KL, Baade PD (2016) Spatio-temporal relative survival of breast and colorectal cancer in Queensland, Australia 2001–2011. Spat Spatio Temp Epidemiol 19:103–114. https://doi.org/10.1016/j.sste.2016.08.002

    Article  Google Scholar 

  • Cramb SM, Moraga P, Mengersen KL et al (2017) Spatial variation in cancer incidence and survival over time across Queensland, Australia. Spat Spatio Temp Epidemiol 23:59–67

    Article  Google Scholar 

  • Dormann CF (2007) Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob Ecol Biogeogr 16:129–138

    Article  Google Scholar 

  • Dreassi E (2018) Lung Cancer Mortality in Tuscany from 1971 to 2010 and Its Connections with Silicosis: a Space-Cohort Analysis Based on Shared Models. Comput Math Methods Med 2018:4964569. https://doi.org/10.1155/2018/4964569

    Article  PubMed  PubMed Central  Google Scholar 

  • Etxeberria J, Goicoa T, Ugarte MD et al (2014) Evaluating space–time models for short-term cancer mortality risk predictions in small areas. Biom J Biometrische Zeitschrift 56:383–402. https://doi.org/10.1002/bimj.201200259

    Article  PubMed  Google Scholar 

  • Etxeberria J, Goicoa T, López-Abente G et al (2017) Spatial gender-age-period-cohort analysis of pancreatic cancer mortality in Spain (1990–2013). PLoS ONE 12:e0169751

    Article  Google Scholar 

  • Goicoa T, Ugarte M, Etxeberria J et al (2016) Age–space–time CAR models in Bayesian disease mapping. Stat Med 35:2391–2405

    Article  CAS  Google Scholar 

  • Goicoa T, Adin A, Etxeberria J et al (2017) Flexible Bayesian P-splines for smoothing age-specific spatio-temporal mortality patterns. Stat Methods Med Res 28:384–403. https://doi.org/10.1177/0962280217726802

    Article  PubMed  Google Scholar 

  • Goicoa T, Adin A, Ugarte M et al (2018) In spatio-temporal disease mapping models, identifiability constraints affect PQL and INLA results. Stoch Env Res Risk Assess 32:749–770

    Article  Google Scholar 

  • Goodman M, LaKind J, Fagliano J et al (2014) Cancer cluster investigations: review of the past and proposals for the future. Int J Environ Res Public Health 11:1479–1499

    Article  Google Scholar 

  • Harris RC, Sumner T, Knight GM et al (2016) Systematic review of mathematical models exploring the epidemiological impact of future TB vaccines. Hum Vaccines Immunother 12:2813–2832

    Article  Google Scholar 

  • Herrmann C, Ess S, Thürlimann B et al (2015) 40 years of progress in female cancer death risk: a Bayesian spatio-temporal mapping analysis in Switzerland. BMC Cancer 15:666

    Article  Google Scholar 

  • Herrmann C, Vounatsou P, Thürlimann B et al (2018) Impact of mammography screening programmes on breast cancer mortality in Switzerland, a country with different regional screening policies. BMJ Open 8:e017806

    Article  Google Scholar 

  • Hurtado Rua SM, Dey DK (2016) A transformation class for spatio-temporal survival data with a cure fraction. Stat Methods Med Res 25:167–187. https://doi.org/10.1177/0962280212445658

    Article  PubMed  Google Scholar 

  • Jackson C, Best Nicky et al (2008) Hierarchical related regression for combining aggregate and individual data in studies of socio-economic disease risk factors. J R Stat Soc Ser A (Stat Soc) 171:159–178

    Google Scholar 

  • Jafari-Koshki T, Schmid VJ, Mahaki B (2014) Trends of breast cancer incidence in Iran during 2004-2008: a Bayesian space–time model. Asian Pac J Cancer Prev 15:1557–1561

    Article  Google Scholar 

  • Jafari-Koshki T, Arsang-Jang S, Mahaki B (2017) Bladder cancer in Iran: geographical distribution and risk factors. Iran J Cancer Prev 10

  • Kang SY, McGree J, Baade P et al (2015) A case study for modelling cancer incidence using Bayesian spatio-temporal models. Aust N Z J Stat 57:325–345

    Article  Google Scholar 

  • Knorr-Held L (2000) Bayesian modelling of inseparable space-time variation in disease risk. Stat Med 19:2555–2567

    Article  CAS  Google Scholar 

  • Knorr-Held L, Best NG (2001) A shared component model for detecting joint and selective clustering of two diseases. J R Stat Soc Ser A (Stat Soc) 164:73–85

    Article  Google Scholar 

  • Lawson AB, Carroll R, Faes C et al (2017) Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping. Environmetrics. https://doi.org/10.1002/env.2465

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee D, Lawson A (2014) Cluster detection and risk estimation for spatio-temporal health data. arXiv preprint arXiv:14081191

  • Leroux BG, Lei X, Breslow N (2000) Estimation of disease rates in small areas: a new mixed model for spatial dependence. In: New York, NY, 2000. Statistical models in epidemiology, the environment, and clinical trials. Springer, New York, pp 179–191

  • López-Abente G, Aragonés N, García-Pérez J et al (2014) Disease mapping and spatio-temporal analysis: importance of expected-case computation criteria. Geospat Health 9:27–35

    Article  Google Scholar 

  • Mahaki B, Mehrabi Y, Kavousi A et al (2018) Joint spatio-temporal shared component model with an application in Iran Cancer Data. Asian Pac J Cancer Prev APJCP 19:1553

    PubMed  Google Scholar 

  • Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  • Nautiyal N, Holford TR (2018) A spatiotemporal back-calculation approach to estimate cancer incidence measures. Stat Med 37:4472–4489

    Article  Google Scholar 

  • Ocaña-Riola R, Montaño-Remacha C, Mayoral-Cortés J (2016) Geographical and temporal variations in female breast cancer mortality in the municipalities of Andalusia (Southern Spain). Int J Environ Res Public Health 13:1162

    Article  Google Scholar 

  • Papoila AL, Riebler A, Amaral-Turkman A et al (2014) Stomach cancer incidence in Southern Portugal 1998–2006: a spatio-temporal analysis. Biom J 56:403–415

    Article  Google Scholar 

  • Raei M, Schmid VJ, Mahaki B (2018) Bivariate spatiotemporal disease mapping of cancer of the breast and cervix uteri among Iranian women. Geospat Health 13

  • Rushworth A, Lee D, Mitchell R (2014) A spatio-temporal model for estimating the long-term effects of air pollution on respiratory hospital admissions in Greater London. Spat Spatiotemporal Epidemiol 10:29–38. https://doi.org/10.1016/j.sste.2014.05.001

    Article  PubMed  Google Scholar 

  • Schmid V, Held L (2004) Bayesian extrapolation of space–time trends in cancer registry data. Biometrics 60:1034–1042. https://doi.org/10.1111/j.0006-341X.2004.00259.x

    Article  PubMed  Google Scholar 

  • Sharafi Z, Asmarian N, Hoorang S et al (2018) Bayesian spatio-temporal analysis of stomach cancer incidence in Iran, 2003–2010. Stoch Env Res Risk Assess 32:2943–2950

    Article  Google Scholar 

  • Sparks C (2015) An examination of disparities in cancer incidence in Texas using Bayesian random coefficient models. PeerJ 3:e1283

    Article  Google Scholar 

  • Ugarte MD, Goicoa T, Etxeberria J et al (2012) Projections of cancer mortality risks using spatio-temporal P-spline models. Stat Methods Med Res 21:545–560. https://doi.org/10.1177/0962280212446366

    Article  CAS  PubMed  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T et al (2014) On fitting spatio-temporal disease mapping models using approximate Bayesian inference. Stat Methods Med Res 23:507–530

    Article  Google Scholar 

  • Ugarte M, Adin A, Goicoa T et al (2015a) Analyzing the evolution of young people’s brain cancer mortality in Spanish provinces. Cancer Epidemiol 39:480–485

    Article  CAS  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T et al (2015b) Temporal evolution of brain cancer incidence in the municipalities of Navarre and the Basque Country, Spain. BMC Public Health 15:1018

    Article  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T (2016) Two-level spatially structured models in spatio-temporal disease mapping. Stat Methods Med Res 25:1080–1100

    Article  Google Scholar 

  • Ugarte MD, Adin A, Goicoa T (2017) One-dimensional, two-dimensional, and three dimensional B-splines to specify space–time interactions in Bayesian disease mapping: model fitting and model identifiability. Spat Stat 22:451–468. https://doi.org/10.1016/j.spasta.2017.04.002

    Article  Google Scholar 

  • Utazi CE, Afuecheta EO, Nnanatu CC (2018) A Bayesian latent process spatiotemporal regression model for areal count data. Spat Spatio Temp Epidemiol 25:25–37

    Article  Google Scholar 

  • Vicens GR, Zafra MS, Moreno-Crespi J et al (2014) Incidence variation of prostate and cervical cancer according to socioeconomic level in the Girona Health Region. BMC public health 14:1079

    Article  Google Scholar 

  • Waller LA, Carlin BP, Xia H et al (1997) Hierarchical spatio-temporal mapping of disease rates. J Am Stat Assoc 92:607–617

    Article  Google Scholar 

  • Yin P, Mu L, Madden M et al (2014) Hierarchical Bayesian modelling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000–2007. J Geogr Syst 16:387–407

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Win Wah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wah, W., Ahern, S. & Earnest, A. A systematic review of Bayesian spatial–temporal models on cancer incidence and mortality. Int J Public Health 65, 673–682 (2020). https://doi.org/10.1007/s00038-020-01384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00038-020-01384-5

Keywords

Navigation