Skip to main content

Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence

Abstract

Objectives

Due to their small size, ultrafine particles (UFP) are believed to exert higher toxicity than larger particles. As numerous studies on health effects of UFP have been published since the last systematic review in 2013, we aim to systematically review the new literature.

Methods

We searched MEDLINE and the specialized LUDOK database for studies published between 01.01.2011 and 11.05.2017 investigating health effects of ambient air pollution-related UFP. We included epidemiologic studies containing UFP measures and quantifiable measures of associations. Relevant data were extracted on the basis of previously developed evaluation criteria.

Results

We identified 85 original studies, conducting short-term (n = 75) and long-term (n = 10) investigations. Panel (n = 32), scripted exposure with predefined settings (n = 16) or time series studies (n = 11) were most frequent. Thirty-four studies adjusted for at least one other pollutant. Most consistent associations were identified for short-term effects on pulmonary/systemic inflammation, heart rate variability and blood pressure.

Conclusions

The evidence suggests adverse short-term associations with inflammatory and cardiovascular changes, which may be at least partly independent of other pollutants. For the other studied health outcomes, the evidence on independent health effects of UFP remains inconclusive or insufficient.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aguilera I, Dratva J, Caviezel S, Burdet L, de Groot E, Ducret-Stich RE et al (2016) Particulate matter and subclinical atherosclerosis: associations between different particle sizes and sources with carotid intima-media thickness in the SAPALDIA study. Environ Health Perspect 124:1700–1706. https://doi.org/10.1289/ehp161

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bind MA, Baccarelli A, Zanobetti A, Tarantini L, Suh H, Vokonas P, Schwartz J (2012) Air pollution and markers of coagulation, inflammation, and endothelial function: associations and epigene-environment interactions in an elderly cohort. Epidemiology 23:332–340. https://doi.org/10.1097/ede.0b013e31824523f0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chung M, Wang DD, Rizzo AM, Gachette D, Delnord M, Parambi R et al (2015) Association of PNC, BC, and PM2.5 measured at a central monitoring site with blood pressure in a predominantly near highway population. Int J Environ Res Public Health 12:2765–2780. https://doi.org/10.3390/ijerph120302765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K et al (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389:1907–1918. https://doi.org/10.1016/s0140-6736(17)30505-6

    Article  Google Scholar 

  5. Croft DP, Cameron SJ, Morrell CN, Lowenstein CJ, Ling F, Zareba W et al (2017) Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environ Res 154:352–361. https://doi.org/10.1016/j.envres.2017.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Diaz-Robles LA, Fu JS, Vergara-Fernandez A, Etcharren P, Schiappacasse LN, Reed GD, Silva MP (2014) Health risks caused by short term exposure to ultrafine particles generated by residential wood combustion: a case study of Temuco, Chile. Environ Int 66:174–181. https://doi.org/10.1016/j.envint.2014.01.017

    Article  CAS  PubMed  Google Scholar 

  7. Dionisio KL, Baxter LK, Chang HH (2014) An empirical assessment of exposure measurement error and effect attenuation in bipollutant epidemiologic models. Environ Health Perspect 122:1216–1224. https://doi.org/10.1289/ehp.1307772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. European Environmental Agency (2017) Air quality in Europe—2017 report. EEA report no 13/2017. https://doi.org/10.2800/358908

  9. Evans KA, Halterman JS, Hopke PK, Fagnano M, Rich DQ (2014) Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children. Environ Res 129:11–19. https://doi.org/10.1016/j.envres.2013.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forouzanfar MH, Afshin A, Alexander LT, Anderson HR, Bhutta ZA, Biryukov S et al (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388:1659–1724. https://doi.org/10.1016/s0140-6736(16)31679-8

    Article  Google Scholar 

  11. Fuller CH, Williams PL, Mittleman MA, Patton AP, Spengler JD, Brugge D (2015) Response of biomarkers of inflammation and coagulation to short-term changes in central site, local, and predicted particle number concentrations. Ann Epidemiol 25:505–511. https://doi.org/10.1016/j.annepidem.2015.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gardner B, Ling F, Hopke PK, Frampton MW, Utell MJ, Zareba W et al (2014) Ambient fine particulate air pollution triggers ST-elevation myocardial infarction, but not non-ST elevation myocardial infarction: a case-crossover study. Part Fibre Toxicol. https://doi.org/10.1186/1743-8977-11-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goldman GT, Mulholland J (2010) Ambient air pollutant measurement error: characterization and impacts in a time-series epidemiologic study in Atlanta. Environ Sci Technol 44:7692–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong J, Zhu T, Kipen H, Wang G, Hu M, Guo Q et al (2014) Comparisons of ultrafine and fine particles in their associations with biomarkers reflecting physiological pathways. Environ Sci Technol 48:5264–5273. https://doi.org/10.1021/es5006016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hampel R, Ruckerl R, Yli-Tuomi T, Breitner S, Lanki T, Kraus U et al (2014) Impact of personally measured pollutants on cardiac function. Int J Hyg Environ Health 217:460–464. https://doi.org/10.1016/j.ijheh.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  16. Han Y, Zhu T, Guan T, Zhu Y, Liu J, Ji Y et al (2016) Association between size-segregated particles in ambient air and acute respiratory inflammation. Sci Total Environ 565:412–419. https://doi.org/10.1016/j.scitotenv.2016.04.196

    Article  CAS  PubMed  Google Scholar 

  17. HEI (2013) Understanding the health effects of ambient ultrafine particles. HEI perspectives 3. Health Effects Institute, Boston, MA

  18. Hudda N, Simon MC, Zamore W, Brugge D, Durant JL (2016) Aviation emissions impact ambient ultrafine particle concentrations in the Greater Boston area. Environ Sci Technol 50:8514–8521. https://doi.org/10.1021/acs.est.6b01815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huttunen K, Siponen T, Salonen I, Yli-Tuomi T, Aurela M, Dufva H et al (2012) Low-level exposure to ambient particulate matter is associated with systemic inflammation in ischemic heart disease patients. Environ Res 116:44–51. https://doi.org/10.1016/j.envres.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  20. Janssen NA, Strak M, Yang A, Hellack B, Kelly FJ, Kuhlbusch TA et al (2015) Associations between three specific a-cellular measures of the oxidative potential of particulate matter and markers of acute airway and nasal inflammation in healthy volunteers. Occup Environ Med 72:49–56. https://doi.org/10.1136/oemed-2014-102303

    Article  PubMed  Google Scholar 

  21. Karner AA, Eisinger DS, Niemeier DA (2010) Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol 44:5334–5344. https://doi.org/10.1021/es100008x

    Article  CAS  PubMed  Google Scholar 

  22. Karottki DG, Beko G, Clausen G, Madsen AM, Andersen ZJ, Massling A et al (2014) Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ Int 73:372–381. https://doi.org/10.1016/j.envint.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  23. Karottki DG, Spilak M, Frederiksen M, Jovanovic Andersen Z, Madsen AM, Ketzel M et al (2015) Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. Int J Environ Res Public Health 12:1667–1686. https://doi.org/10.3390/ijerph120201667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lane KJ, Levy JI, Scammell MK, Patton AP, Durant JL, Mwamburi M et al (2015) Effect of time-activity adjustment on exposure assessment for traffic-related ultrafine particles. J Expo Sci Environ Epidemiol 25:506–516. https://doi.org/10.1038/jes.2015.11

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lane KJ, Levy JI, Scammell MK, Peters JL, Patton AP, Reisner E et al (2016) Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers. Environ Int 92–93:173–182. https://doi.org/10.1016/j.envint.2016.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lanzinger S, Schneider A, Breitner S, Stafoggia M, Erzen I, Dostal M et al (2016) Associations between ultrafine and fine particles and mortality in five central European cities—results from the UFIREG study. Environ Int 88:44–52. https://doi.org/10.1016/j.envint.2015.12.006

    Article  PubMed  Google Scholar 

  27. Laumbach RJ, Kipen HM, Ko S, Kelly-McNeil K, Cepeda C, Pettit A et al (2014) A controlled trial of acute effects of human exposure to traffic particles on pulmonary oxidative stress and heart rate variability. Part Fibre Toxicol 11:45. https://doi.org/10.1186/s12989-014-0045-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laurent O, Hu J, Li L, Cockburn M, Escobedo L, Kleeman MJ, Wu J (2014) Sources and contents of air pollution affecting term low birth weight in Los Angeles County, California, 2001–2008. Environ Res 134:488–495. https://doi.org/10.1016/j.envres.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  29. Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M et al (2016a) Low birth weight and air pollution in California: which sources and components drive the risk? Environ Int 92–93:471–477. https://doi.org/10.1016/j.envint.2016.04.034

    Article  CAS  PubMed  Google Scholar 

  30. Laurent O, Hu J, Li L, Kleeman MJ, Bartell SM, Cockburn M et al (2016b) A statewide nested case-control study of preterm birth and air pollution by source and composition: California, 2001–2008. Environ Health Perspect 124:1479–1486. https://doi.org/10.1289/ehp.1510133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leitte AM, Schlink U, Herbarth O, Wiedensohler A, Pan XC, Hu M et al (2012) Associations between size-segregated particle number concentrations and respiratory mortality in Beijing, China. Int J Environ Health Res 22:119–133. https://doi.org/10.1080/09603123.2011.605878

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Lane KJ, Corlin L, Patton AP, Durant JL, Thanikachalam M et al (2017) Association of Long-term near-highway exposure to ultrafine particles with cardiovascular diseases, diabetes and hypertension. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph14050461

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manney S, Meddings CM, Harrison RM, Mansur AH, Karakatsani A, Analitis A et al (2012) Association between exhaled breath condensate nitrate plus nitrite levels with ambient coarse particle exposure in subjects with airways disease. Occup Environ Med 69:663–669. https://doi.org/10.1136/oemed-2011-100255

    Article  CAS  PubMed  Google Scholar 

  34. Mehta AJ, Kubzansky LD, Coull BA, Kloog I, Koutrakis P, Sparrow D et al (2015) Associations between air pollution and perceived stress: the Veterans Administration Normative Aging Study. Environ Health. https://doi.org/10.1186/1476-069x-14-10

    Article  PubMed  PubMed Central  Google Scholar 

  35. Meng X, Ma YJ, Chen RJ, Zhou ZJ, Chen BH, Kan HD (2013) Size-fractionated particle number concentrations and daily mortality in a Chinese city. Environ Health Perspect 121:1174–1178. https://doi.org/10.1289/ehp.1206398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. National Heart Lung and Blood Institute (2014) Quality assessment tool for observational, cohort and cross-sectional studies, US-Department of Health and Human Services. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 04 July 2017

  37. Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, Kleeman MJ (2015) Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California Teachers Study Cohort. Environ Health Perspect 123:549–556. https://doi.org/10.1289/ehp.1408565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peters A, Hampel R, Cyrys J, Breitner S, Geruschkat U, Kraus U et al (2015) Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Part Fibre Toxicol. https://doi.org/10.1186/s12989-015-0083-7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pieters N, Koppen G, Van Poppel M, De Prins S, Cox B, Dons E et al (2015) Blood pressure and same-day exposure to air pollution at school: associations with nano-sized to coarse PM in children. Environ Health Perspect 123:737–742. https://doi.org/10.1289/ehp.1408121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rich DQ, Zareba W, Beckett W, Hopke PK, Oakes D, Frampton MW et al (2012) Are ambient ultrafine, accumulation mode, and fine particles associated with adverse cardiac responses in patients undergoing cardiac rehabilitation? Environ Health Perspect 120:1162–1169. https://doi.org/10.1289/ehp.1104262

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rosenthal FS, Kuisma M, Lanki T, Hussein T, Boyd J, Halonen JI, Pekkanen J (2013) Association of ozone and particulate air pollution with out-of-hospital cardiac arrest in Helsinki, Finland: evidence for two different etiologies. J Expo Sci Environ Epidemiol 23:281–288. https://doi.org/10.1038/jes.2012.121

    Article  CAS  PubMed  Google Scholar 

  42. Rückerl R, Hampel R, Breitner S, Cyrys J, Kraus U, Carter J et al (2014) Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ Int 70:32–49. https://doi.org/10.1016/j.envint.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  43. Samoli E, Atkinson RW, Analitis A, Fuller GW, Beddows D, Green DC et al (2016) Differential health effects of short-term exposure to source-specific particles in London, UK. Environ Int 97:246–253. https://doi.org/10.1016/j.envint.2016.09.017

    Article  CAS  PubMed  Google Scholar 

  44. Sarnat JA, Golan R, Greenwald R, Raysoni AU, Kewada P, Winquist A et al (2014) Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters. Environ Res 133:66–76. https://doi.org/10.1016/j.envres.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stafoggia M, Schneider A, Cyrys J, Samoli E, Andersen ZJ, Bedada GB et al (2017) Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 28:172–180. https://doi.org/10.1097/ede.0000000000000599

    Article  PubMed  Google Scholar 

  46. Strak M, Janssen NA, Godri KJ, Gosens I, Mudway IS, Cassee FR et al (2012) Respiratory health effects of airborne particulate matter: the role of particle size, composition, and oxidative potential-the RAPTES project. Environ Health Perspect 120:1183–1189. https://doi.org/10.1289/ehp.1104389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Strak M, Hoek G, Godri KJ, Gosens I, Mudway IS, van Oerle R et al (2013) Composition of PM affects acute vascular inflammatory and coagulative markers—the RAPTES project. PLoS ONE 8:e58944. https://doi.org/10.1371/journal.pone.0058944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su C, Hampel R, Franck U, Wiedensohler A, Cyrys J, Pan X et al (2015) Assessing responses of cardiovascular mortality to particulate matter air pollution for pre-, during- and post-2008 Olympics periods. Environ Res 142:112–122. https://doi.org/10.1016/j.envres.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  49. Sun Y, Song X, Han Y, Ji Y, Gao S, Shang Y et al (2015) Size-fractioned ultrafine particles and black carbon associated with autonomic dysfunction in subjects with diabetes or impaired glucose tolerance in Shanghai, China. Part Fibre Toxicol 12:8. https://doi.org/10.1186/s12989-015-0084-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sunyer J, Esnaola M, Alvarez-Pedrerol M, Forns J, Rivas I, Lopez-Vicente M et al (2015) Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. https://doi.org/10.1371/journal.pmed.1001792

    Article  PubMed  PubMed Central  Google Scholar 

  51. Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K et al (2017) A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. https://doi.org/10.1183/13993003.00419-2016

    Article  PubMed  PubMed Central  Google Scholar 

  52. Viehmann A, Hertel S, Fuks K, Eisele L, Moebus S, Mohlenkamp S et al (2015) Long-term residential exposure to urban air pollution, and repeated measures of systemic blood markers of inflammation and coagulation. Occup Environ Med 72:656–663. https://doi.org/10.1136/oemed-2014-102800

    Article  PubMed  Google Scholar 

  53. Wang M, Utell MJ, Schneider A, Zareba W, Frampton MW, Oakes D et al (2016) Does total antioxidant capacity modify adverse cardiac responses associated with ambient ultrafine, accumulation mode, and fine particles in patients undergoing cardiac rehabilitation? Environ Res 149:15–22. https://doi.org/10.1016/j.envres.2016.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Weichenthal S, Hatzopoulou M, Goldberg MS (2014) Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. https://doi.org/10.1186/s12989-014-0070-4

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wittkopp S, Staimer N, Tjoa T, Gillen D, Daher N, Shafer M et al (2013) Mitochondrial genetic background modifies the relationship between traffic-related air pollution exposure and systemic biomarkers of inflammation. PLoS ONE 8:e64444. https://doi.org/10.1371/journal.pone.0064444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolf K, Schneider A, Breitner S, Meisinger C, Heier M, Cyrys J et al (2015) Associations between short-term exposure to particulate matter and ultrafine particles and myocardial infarction in Augsburg, Germany. Int J Hyg Environ Health 218:535–542. https://doi.org/10.1016/j.ijheh.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, Zhu T, Kipen H, Wang G, Huang W, Rich D et al (2013) Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 Beijing Olympics. Res Rep Health Eff Inst 174:5

    Google Scholar 

  58. Zhang X, Staimer N, Gillen DL, Tjoa T, Schauer JJ, Shafer MM et al (2016) Associations of oxidative stress and inflammatory biomarkers with chemically-characterized air pollutant exposures in an elderly cohort. Environ Res 150:306–319. https://doi.org/10.1016/j.envres.2016.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the German Environmental Agency (Project Number: Grant 00377 7205-2 UKAGEP) and the Swiss Federal Office for the Environment (Contracts No 110001982/8T20/13.0077.PJ/0003/M461-2794 and 00.5082.PZ 1-0389. Financial support was provided by the Swiss Federal Ministry of Education and Research.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simone Ohlwein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2073 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohlwein, S., Kappeler, R., Kutlar Joss, M. et al. Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 64, 547–559 (2019). https://doi.org/10.1007/s00038-019-01202-7

Download citation

Keywords

  • Ultrafine particles
  • Air pollution
  • Epidemiology
  • Health effects
  • Particulate matter