Social inequalities in the association between temperature and mortality in a South European context

  • Marc Marí-Dell’Olmo
  • Aurelio Tobías
  • Anna Gómez-Gutiérrez
  • Maica Rodríguez-Sanz
  • Patricia García de Olalla
  • Esteve Camprubí
  • Antonio Gasparrini
  • Carme Borrell
Original Article

Abstract

Objectives

To analyse social inequalities in the association between ambient temperature and mortality by sex, age and educational level, in the city of Barcelona for the period 1992–2015.

Methods

Mortality data are represented by daily counts for natural mortality. As a measure of socioeconomic position, we used the educational level of the deceased. We also considered age group and sex. We considered, as a measure of exposure, the daily maximum temperatures. Time-series Poisson regression with distributed lag non-linear models was fitted for modelling the relationship between temperature and mortality.

Results

Women had higher risk of mortality by hot temperatures than men. Temperature–mortality association (heat and cold) was evident for the elderly, except for heat-related mortality in women which was present in all age groups. Men with primary education or more were more vulnerable to moderate or extreme temperatures than those without studies. Finally, women were vulnerable to heat-related mortality in all educational levels while women without studies were more vulnerable to cold temperatures.

Conclusions

Social and economic individual characteristics play an important role in vulnerability to high and low temperatures. It is important that decision-making groups consider identified vulnerable subgroups when redacting and implementing climate change resilience and adaptation plans.

Keywords

Socioeconomic inequalities Mortality Temperature Cold Heat Climate change 

Notes

Acknowledgements

This article was partially funded by CIBER Epidemiología y Salud Pública (CIBERESP). Dr. Gasparrini was supported from a grant from Medical Research Council UK (Grant ID: MR/M022625/1). Moreover, we want to thank “Servei Meteorològic de Catalunya” (METEOCAT) for providing temperature data.

Authors’ contributions

All authors meet the conditions of authorship. MMDO and AT contributed in the conception and design of the study. All the authors contributed to the acquisition and interpretation of data. MMDO, AT and AG performed the statistical analyses. All the authors contributed in the interpretation and the discussion of the results. MMDO wrote the first draft of the paper. All the authors critically revised the manuscript and approved the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article is based on a secondary analysis of administrative data, and does not contain any studies with human participants performed by any of the authors. Obtaining informed consent or approval by a medical ethics board was not required under national regulations.

Supplementary material

38_2018_1094_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 35 kb)

References

  1. Almendra R, Santana P, Vasconcelos J (2017) Evidence of social deprivation on the spatial patterns of excess winter mortality. Int J Public Health 62:849–856.  https://doi.org/10.1007/s00038-017-0964-7 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Analitis A, Michelozzi P, D’Ippoliti D et al (2014) Effects of heat waves on mortality: effect modification and confounding by air pollutants. Epidemiology 25:15–22.  https://doi.org/10.1097/EDE.0b013e31828ac01b CrossRefPubMedGoogle Scholar
  3. Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213.  https://doi.org/10.1097/EDE.0b013e318190ee08 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basu R (2009) High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health 8:40.  https://doi.org/10.1186/1476-069X-8-40 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baccini M, Biggeri A, Accetta G et al (2008) Heat effects on mortality in 15 European cities. Epidemiology 19:711–719.  https://doi.org/10.1097/EDE.0b013e318176bfcd CrossRefPubMedGoogle Scholar
  6. Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202.  https://doi.org/10.1093/epirev/mxf007 CrossRefPubMedGoogle Scholar
  7. Benmarhnia T, Deguen S, Kaufman JS, Smargiassi A (2015) Vulnerability to heat-related mortality: a systematic review, meta-analysis, and meta-regression analysis. Epidemiology 26:781–793.  https://doi.org/10.1097/EDE.0000000000000375 CrossRefPubMedGoogle Scholar
  8. Borrell C, Mari-Dell’Olmo M, Rodriguez-Sanz M et al (2006) Socioeconomic position and excess mortality during the heat wave of 2003 in Barcelona. Eur J Epidemiol 21:633–640.  https://doi.org/10.1007/s10654-006-9047-4 CrossRefPubMedGoogle Scholar
  9. Costello A, Abbas M, Allen A et al (2009) Managing the health effects of climate change. Lancet and University College London Institute for Global Health Commission. Lancet 373:1693–1733.  https://doi.org/10.1016/S0140-6736(09)60935-1 CrossRefPubMedGoogle Scholar
  10. Curriero FC, Heiner KS, Samet JM et al (2002) Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol 155:80–87.  https://doi.org/10.1093/aje/155.1.80 CrossRefPubMedGoogle Scholar
  11. de’Donato FK, Leone M, Scortichini M et al (2015) Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE project. Int J Environ Res Public Health 12:15567–15583.  https://doi.org/10.3390/ijerph121215006 CrossRefGoogle Scholar
  12. Galobardes B, Shaw M, Lawlor DA et al (2006) Indicators of socioeconomic position (part 1). J Epidemiol Community Health 60:7–12.  https://doi.org/10.1136/jech.2004.023531 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gasparrini A (2014) Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 33:881–899.  https://doi.org/10.1002/sim.5963 CrossRefPubMedGoogle Scholar
  14. Gasparrini A, Leone M (2014) Attributable risk from distributed lag models. BMC Med Res Methodol 14:55.  https://doi.org/10.1186/1471-2288-14-55 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gasparrini A, Armstrong B, Kenward MG (2010) Distributed lag non-linear models. Stat Med 29:2224–2234.  https://doi.org/10.1002/sim.3940 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gasparrini A, Guo Y, Hashizume M et al (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375.  https://doi.org/10.1016/S0140-6736(14)62114-0 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100.  https://doi.org/10.1136/oem.2006.029017 CrossRefPubMedGoogle Scholar
  18. Huang Z, Lin H, Liu Y et al (2015) Individual-level and community-level effect modifiers of the temperature–mortality relationship in 66 Chinese communities. BMJ Open 5:e009172.  https://doi.org/10.1136/bmjopen-2015-009172 CrossRefPubMedPubMedCentralGoogle Scholar
  19. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. Special Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  20. Li J, Xu X, Yang J et al (2017) Ambient high temperature and mortality in Jinan, China: a study of heat thresholds and vulnerable populations. Environ Res 156:657–664.  https://doi.org/10.1016/j.envres.2017.04.020 CrossRefPubMedGoogle Scholar
  21. Lopez AD, Collishaw NE, Piha T (1994) A descriptive model of the cigarette epidemic in developed countries. Tob Control 3:242–247.  https://doi.org/10.1136/tc.3.3.242 CrossRefPubMedCentralGoogle Scholar
  22. Ma W, Yang C, Tan J et al (2012) Modifiers of the temperature–mortality association in Shanghai, China. Int J Biometeorol 56:205–207.  https://doi.org/10.1007/s00484-011-0406-9 CrossRefPubMedGoogle Scholar
  23. Manangan AP, Uejio CK, Saha S, et al (2015) Assessing health vulnerability to climate change. Cent Dis Control Prev 1–23Google Scholar
  24. Marí-Dell’Olmo M, Novoa AM, Camprubí L et al (2016) Housing policies and health inequalities. Int J Health Serv.  https://doi.org/10.1177/0020731416684292 PubMedGoogle Scholar
  25. Marmot Review Team (2011) The health impacts of cold homes and fuel poverty. Friends of the Earth & the Marmot Review Team, LondonGoogle Scholar
  26. McMichael AJ, Wilkinson P, Kovats RS et al (2008) International study of temperature, heat and urban mortality: The “ISOTHURM” project. Int J Epidemiol 37:1121–1131.  https://doi.org/10.1093/ije/dyn086 CrossRefPubMedGoogle Scholar
  27. Medina-Ramón M, Schwartz J (2007) Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. Occup Environ Med 64:827–833.  https://doi.org/10.1136/oem.2007.033175 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Medina-Ramón M, Zanobetti A, Cavanagh DP, Schwartz J (2006) Extreme temperatures and mortality: assessing effect modification by personal characteristics and specific cause of death in a multi-city case-only analysis. Environ Health Perspect 114:1331–1336.  https://doi.org/10.1289/ehp.9074 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mercer JB (2003) Cold–an underrated risk factor for health. Environ Res 92:8–13CrossRefPubMedGoogle Scholar
  30. O’Neill MS, Zanobetti A, Schwartz J (2003) Modifiers of the temperature and mortality association in seven US cities. Am J Epidemiol 157:1074–1082.  https://doi.org/10.1093/aje/kwg096 CrossRefPubMedGoogle Scholar
  31. Onozuka D, Hagihara A (2015) Variation in vulnerability to extreme-temperature-related mortality in Japan: a 40-year time-series analysis. Environ Res 140:177–184.  https://doi.org/10.1016/j.envres.2015.03.031 CrossRefPubMedGoogle Scholar
  32. Peralta A, Camprubí L, Rodríguez-Sanz M et al (2017) Impact of energy efficiency interventions in public housing buildings on cold-related mortality: a case-crossover analysis. Int J Epidemiol.  https://doi.org/10.1093/ije/dyw335 PubMedGoogle Scholar
  33. Semenza JC, Rubin CH, Falter KH et al (1996) Heat-related deaths during the July 1995 heat wave in Chicago. N Engl J Med 335:84–90.  https://doi.org/10.1056/NEJM199607113350203 CrossRefPubMedGoogle Scholar
  34. Son J, Lee J, Anderson GB et al (2013) Vulnerability to temperature-related mortality in Seoul, Korea. Environ Res Lett 6:034027.  https://doi.org/10.1088/1748-9326/6/3/034027.Vulnerability CrossRefGoogle Scholar
  35. Stafoggia M, Forastiere F, Agostini D et al (2006) Vulnerability to heat-related mortality: a multicity, population-based, case-crossover analysis. Epidemiology 17:315–323.  https://doi.org/10.1097/01.ede.0000208477.36665.34 CrossRefPubMedGoogle Scholar
  36. Tobías A, Armstrong B, Gasparrini A (2016) Investigating uncertainty in the minimum mortality temperature. Epidemiology.  https://doi.org/10.1097/EDE.0000000000000567 PubMedCentralGoogle Scholar
  37. Villalbí JR, Ventayol I (2016) Climate change and health in the urban context: the experience of Barcelona. Int J Health Serv 46:389–405.  https://doi.org/10.1177/0020731416643444 CrossRefPubMedGoogle Scholar
  38. Woodward A, Smith KR, Campbell-Lendrum D et al (2014) Climate change and health: on the latest IPCC report. Lancet 383:1185–1189.  https://doi.org/10.1016/S0140-6736(14)60576-6 CrossRefPubMedGoogle Scholar
  39. World Health Organization (WHO) (2014) WHO guidance to protect health from climate change through health adaptation planning. 27Google Scholar
  40. Yu W, Vaneckova P, Mengersen K et al (2010) Is the association between temperature and mortality modified by age, gender and socio-economic status? Sci Total Environ 408:3513–3518.  https://doi.org/10.1016/j.scitotenv.2010.04.058 CrossRefPubMedGoogle Scholar
  41. Zanobetti A, Schwartz J (2008) Temperature and Mortality in Nine US Cities. Epidemiology 19:563–570.  https://doi.org/10.1097/EDE.0b013e31816d652d CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD (2013) Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics. Epidemiology 24:809–819.  https://doi.org/10.1097/01.ede.0000434432.06765.91 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Swiss School of Public Health (SSPH+) 2018

Authors and Affiliations

  • Marc Marí-Dell’Olmo
    • 1
    • 2
    • 3
    • 4
  • Aurelio Tobías
    • 5
  • Anna Gómez-Gutiérrez
    • 1
  • Maica Rodríguez-Sanz
    • 1
    • 2
    • 3
    • 4
  • Patricia García de Olalla
    • 1
    • 2
    • 3
    • 4
  • Esteve Camprubí
    • 1
  • Antonio Gasparrini
    • 6
  • Carme Borrell
    • 1
    • 2
    • 3
    • 4
  1. 1.Agència de Salut Pública de BarcelonaBarcelonaSpain
  2. 2.CIBER Epidemiología y Salud Pública (CIBERESP)MadridSpain
  3. 3.Institut d’Investigació Biomèdica (IIB Sant Pau)BarcelonaSpain
  4. 4.Universitat Pompeu FabraBarcelonaSpain
  5. 5.Institute of Environmental Assessment and Water Research (IDAEA)Spanish Council for Scientific Research (CSIC)BarcelonaSpain
  6. 6.London School of Hygiene and Tropical MedicineLondonUK

Personalised recommendations