The association of unemployment with glucose metabolism: a systematic review and meta-analysis

  • Tuulia Varanka-Ruuska
  • Nina Rautio
  • Heli Lehtiniemi
  • Jouko Miettunen
  • Sirkka Keinänen-Kiukaanniemi
  • Sylvain Sebert
  • Leena Ala-Mursula
Review
  • 56 Downloads

Abstract

Objectives

Unemployment has been linked with poor health. We hypothesized that being unemployed is associated with disorders of glucose metabolism and performed a systematic review and meta-analysis of the literature to ascertain the relationship.

Methods

We searched the databases of Scopus, Medline Ovid and Web of Science for population-based original studies for past 20 years. Random effects meta-analyses were used to estimate odds ratios (OR) with 95% confidence intervals (CI) for prediabetes and type 2 diabetes among the unemployed as compared to those employed, separately for men and women when possible.

Results

Out of 981 articles found, 12 articles were included in the systematic review and eight articles in the meta-analyses. Unemployment was associated with 1.6-fold odds for prediabetes (OR 1.58; 95% CI 1.07–2.35), and 1.7-fold odds for type 2 diabetes (OR 1.72; 95% CI 1.14–2.58) in the total sample. The corresponding associations for type 2 diabetes were also found stratified for men (OR 1.53; 95% CI 1.47–1.60) and women (OR 1.60; 95% CI 1.33–1.92).

Conclusions

Unemployment is associated with prediabetes and type 2 diabetes, global concerns of public health with potential for prevention.

Keywords

Unemployment Glucose metabolism Prediabetes Type 2 diabetes Systematic review Meta-analysis 

Notes

Compliance with ethical standards

Conflict of interest

Author Tuulia Varanka-Ruuska declares she has no conflicts of interest. Author Nina Rautio declares she has no conflicts of interest. Author Heli Lehtiniemi declares she has no conflicts of interest. Author Jouko Miettunen declares he has no conflicts of interest. Author Sirkka Keinänen-Kiukaanniemi declares she has no conflicts of interest. Author Sylvain Sebert declares he has no conflicts of interest. Author Leena Ala-Mursula declares she has no conflicts of interest.

Ethical approval

This article is based on a secondary analysis of existing literature and does not contain any studies with human participants nor animals conducted by the authors. Obtaining approval by an ethics committee is not required under national regulations. Good scientific standards have been followed according to MOOSE guidelines.

Funding

This project has received funding from the Academy of Finland (#268336) and the European Union’s Horizon 2020 research and innovation program (under Grant agreement no. 633595) for the DynaHEALTH action. The funders had no role in study design, data analysis, data interpretation and writing of the paper.

Supplementary material

38_2017_1040_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 43 kb)
38_2017_1040_MOESM2_ESM.docx (29 kb)
Supplementary material 2 (DOCX 29 kb)

References

  1. Al-Baghli NA, Al-Ghamdi AJ, Al-Turki KA, Al Elq AH, El-Zubaier AG, Bahnassy A (2010) Prevalence of diabetes mellitus and impaired fasting glucose levels in the Eastern Province of Saudi Arabia: results of a screening campaign. Singap Med J 51:923–930Google Scholar
  2. American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Supplement 1):S81–S90. doi:10.2337/dc14-S081 CrossRefGoogle Scholar
  3. Artazcoz L, Benach J, Borrell C, Cortès I (2004) Unemployment and mental health: understanding the interactions among gender, family roles, and social class. Am J Public Health 94:82–88CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azimi-Nezhad M, Ghayour-Mobarhan M, Parizadeh MR, Safarian M, Esmaeili H, Parizadeh SMJ, Khodaee G, Hosseini J, Abasalti Z, Hassankhani B, Ferns G (2008) Prevalence of type 2 diabetes mellitus in Iran and its relationship with gender, urbanisation, education, marital status and occupation. Singap Med J 49:571–576Google Scholar
  5. Bird Y, Lemstra M, Rogers M, Moraros J (2015) The relationship between socioeconomic status/income and prevalence of diabetes and associated conditions: a cross-sectional population-based study in Saskatchewan, Canada. Int J Equity Health 14:93. doi:10.1186/s12939-015-0237-0 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Broom DH, D’Souza RM, Strazdins L, Butterworth P, Parslow R, Rodgers B (2006) The lesser evil: bad jobs or unemployment? A survey of mid-aged Australians. Soc Sci Med 63:575–586CrossRefPubMedGoogle Scholar
  7. Centers for Disease Control and Prevention (2015) Distribution of age at diagnosis of diabetes among adult incident cases aged 18–79 years, United States, 2011. http://www.cdc.gov/diabetes/statistics/age/fig1.htm. Accessed 3 Sept 2015
  8. Dhippayom T, Chaiyakunapruk N, Krass I (2014) How diabetes risk assessment tools are implemented in practice: a systematic review. Diabetes Res Clin Pract 104:329–342. doi:10.1016/j.diabres.2014.01.008 CrossRefPubMedGoogle Scholar
  9. Dodu N (2005) Is employment good for well-being? A literature review. J Occup Psychol Employ Disabil 7:17–33Google Scholar
  10. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52:377–384CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eriksson AK, van den Donk M, Hilding A, Östenson CG (2013) Work stress, sense of coherence, and risk of type 2 diabetes in a prospective study of middle-aged Swedish men and women. Diabetes Care 36:2683–2689. doi:10.2337/dc12-1738 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferrie JE, Virtanen M, Jokela M (2016) Job insecurity and risk of diabetes: a meta-analysis of individual participant data. CMAJ Can Med Assoc J. doi:10.1503/cmaj.150942 Google Scholar
  13. Ford E, Clark C, McManus S, Harris J, Jenkins R, Bebbington P, Brugha T, Meltzer H, Stansfeld SA (2010) Common mental disorders, unemployment and welfare benefits in England. Public Health 124:675–681. doi:10.1016/j.puhe.2010.08.019 CrossRefPubMedGoogle Scholar
  14. Friedrich N, Schneider HJ, John U, Dörr M, Baumeister SE, Homuth G, Völker U, Wallaschofski H (2013) Correlates of adverse outcomes in abdominally obese individuals: findings from the 5-year followup of the population-based study of health in Pomerania. J Obes. doi:10.1155/2013/762012 PubMedPubMedCentralGoogle Scholar
  15. Garcy AM, Vågerö D (2012) The length of unemployment predicts mortality, differently in men and women, and by cause of death: a 6 years mortality follow-up of the Swedish 1992–1996 recession. Soc Sci Med 74:1911–1920. doi:10.1016/j.socscimed.2012.01.034 CrossRefPubMedGoogle Scholar
  16. Giatti L, Barreto SM, César CC (2010) Unemployment and self-rated health: neighborhood influence. Soc Sci Med 71:815–823. doi:10.1016/j.socscimed.2010.05.021 CrossRefPubMedGoogle Scholar
  17. Heden Stahl C, Novak M, Hansson P, Lappas G, Wilhelmsen L, Rosengren A (2014) Incidence of type 2 diabetes among occupational classes in Sweden: a 35-year follow-up cohort study in middle-aged men. Diabet Med 31:674–680CrossRefPubMedPubMedCentralGoogle Scholar
  18. Higgins J, Thompson S, Deeks J, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ Br Med J 327:557–560CrossRefGoogle Scholar
  19. Hughes A, McMunn A, Bartley M, Kumari M (2015) Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK. J Epidemiol Community Health 69:673–679. doi:10.1136/jech-2014-204404 CrossRefPubMedPubMedCentralGoogle Scholar
  20. International Diabetes Federation (2015) IDF diabetes atlas, 7th edn. International Diabetes Federation, BrusselsGoogle Scholar
  21. Janlert U (1992) Unemployment and blood pressure in Swedish building labourers. J Intern Med 231:241–246CrossRefPubMedGoogle Scholar
  22. Janlert U (1997) Unemployment as a disease and diseases of the unemployed. Scand J Work Environ Health 23:79–83PubMedGoogle Scholar
  23. Janlert U, Winefield AH, Hammarstrom A (2015) Length of unemployment and health-related outcomes: a life-course analysis. Eur J Public Health 25:662–667. doi:10.1093/eurpub/cku186 CrossRefPubMedGoogle Scholar
  24. Khlat M, Sermet C, Le Pape A (2004) Increased prevalence of depression, smoking, heavy drinking and use of psycho-active drugs among unemployed men in France. Eur J Epidemiol 19:445–451. doi:10.1023/B:EJEP.0000027356.71414.bd CrossRefPubMedGoogle Scholar
  25. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403. doi:10.1056/NEJMoa012512 CrossRefPubMedGoogle Scholar
  26. Kridli SA-, Herman WH, Brown MB, Fakhouri H, Jaber LA (2006) The epidemiology of diabetes and its risk factors among Chaldean Americans. Ethn Dis 16:351–356PubMedGoogle Scholar
  27. Kumari M, Head J, Marmot M (2004) Prospective study of social and other risk factors for incidence of type 2 diabetes in the Whitehall II study. Arch Intern Med 164:1873–1880CrossRefPubMedGoogle Scholar
  28. Laitinen J, Power C, Ek E, Sovio U, Järvelin MR (2002) Unemployment and obesity among young adults in a Northern Finland 1966 birth cohort. Int J Obes 26:1329–1338. doi:10.1038/sj.ijo.0802134 CrossRefGoogle Scholar
  29. Lindström J, Peltonen M, Eriksson JG, Ilanne-Parikka P, Aunola S, Keinänen-Kiukaanniemi S, Uusitupa M, Tuomilehto J (2013) Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia 56:284–293CrossRefPubMedGoogle Scholar
  30. Lundin A, Falkstedt D, Lundberg I, Hemmingsson T (2014) Unemployment and coronary heart disease among middle-aged men in Sweden: 39 243 men followed for 8 years. Occup Environ Med 71:183–188. doi:10.1136/oemed-2013-101721 CrossRefPubMedGoogle Scholar
  31. Martikainen PT (1990) Unemployment and mortality among Finnish men, 1981–5. Br Med J 301:407–411CrossRefGoogle Scholar
  32. Martikainen PT, Valkonen T (1996) Excess mortality of unemployed men and women during a period of rapidly increasing unemployment. Lancet 348:909–912. doi:10.1016/S0140-6736(96)03291-6 CrossRefPubMedGoogle Scholar
  33. Martin SA, Haren MT, Taylor AW, Middleton SM, Wittert GA (2008) Chronic disease prevalence and associations in a cohort of Australian men: the Florey Adelaide Male Ageing Study (FAMAS). BMC Public Health. doi:10.1186/1471-2458-8-261 Google Scholar
  34. Montgomery S, Cook D, Bartley M, Wadsworth M (1998) Unemployment, cigarette smoking, alcohol consumption and body weight in young British men. European J Public Health 8(1):21–27Google Scholar
  35. Morikawa Y, Nakagawa H, Miura K, Soyama Y, Ishizaki M, Kido T, Naruse Y, Suwazono Y, Nogawa K (2005) Shift work and the risk of diabetes mellitus among Japanese male factory workers. Scand J Work Environ Health 31(3):179–183Google Scholar
  36. Müller G, Hartwig S, Greiser KH, Moebus S, Pundt N, Schipf S, Völzke H, Maier W, Meisinger C, Tamayo T, Rathmann W, Berger K (2013a) Gender differences in the association of individual social class and neighbourhood unemployment rate with prevalent type 2 diabetes mellitus: a cross-sectional study from the DIAB-CORE consortium. BMJ Open. doi:10.1136/bmjopen-2013-002601 Google Scholar
  37. Müller G, Kluttig A, Greiser KH, Moebus S, Slomiany U, Schipf S, Völzke H, Maier W, Meisinger C, Tamayo T, Rathmann W, Berger K (2013b) Regional and neighborhood disparities in the odds of type 2 diabetes: results from 5 population-based studies in Germany (DIAB-CORE consortium). Am J Epidemiol 178:221–230. doi:10.1093/aje/kws466 CrossRefPubMedGoogle Scholar
  38. Noble D, Mathur R, Dent T, Meads C, Greenhalgh T (2011) Risk models and scores for type 2 diabetes: systematic review. BMJ (Online) 343:1243. doi:10.1136/bmj.d7163 Google Scholar
  39. Novak M, Björck L, Giang KW, Heden-Ståhl C, Wilhelmsen L, Rosengren A (2013) Perceived stress and incidence of type 2 diabetes: a 35-year follow-up study of middle-aged Swedish men. Diabet Med 30:e8–e16CrossRefPubMedGoogle Scholar
  40. OECD (2014a) Unemployment rate (indicator). https://data.oecd.org/unemp/unemployment-rate.htm. Accessed 1 Mar 2017 (the data Q3 2014 used). doi:10.1787/997c8750-en
  41. OECD (2014b) Foreign-born unemployment (indicator). https://data.oecd.org/migration/foreign-born-unemployment.htm. Accessed 1 Mar 2017 (the data 2014 used). doi:10.1787/ba5d2ce0-en
  42. Poulsen K, Cleal B, Willaing I (2014) Diabetes and work: 12-year national follow-up study of the association of diabetes incidence with socioeconomic group, age, gender and country of origin. Scand J Public Health 42:728–733. doi:10.1177/1403494814556177 CrossRefPubMedGoogle Scholar
  43. Ramezankhani A, Pournik O, Shahrabi J, Khalili D, Azizi F, Hadaegh F (2014) Applying decision tree for identification of a low risk population for type 2 diabetes. Tehran lipid and glucose study. Diabetes Res Clin Pract. doi:10.1016/j.diabres.2014.07.003 PubMedGoogle Scholar
  44. Rautio N, Varanka-Ruuska T, Vaaramo E, Palaniswamy S, Nedelec R, Miettunen J, Karppinen J, Auvinen J, Järvelin M-R, Keinänen-Kiukaanniemi S, Sebert S, Ala-Mursula L (2017) Accumulated exposure to unemployment is related to impaired glucose metabolism in middle-aged men: a follow-up of the Northern Finland Birth Cohort 1966. Prim Care Diabetes 11:365–372. doi:10.1016/j.pcd.2017.03.010 CrossRefPubMedGoogle Scholar
  45. Roelfs DJ, Shor E, Davidson KW, Schwartz JE (2011) Losing life and livelihood: a systematic review and meta-analysis of unemployment and all-cause mortality. Soc Sci Med 72:840–854. doi:10.1016/j.socscimed.2011.01.005 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Seuring T, Archangelidi O, Suhrcke M (2015) The economic costs of type 2 diabetes: a global systematic review. Pharmacoeconomics 33:811–831. doi:10.1007/s40273-015-0268-9 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Sterne J (2009) Meta-analysis in Stata: an updated collection from the Stata Journal| Jonathan Sterne| 9781597180498| CRC PRESSGoogle Scholar
  48. Stroup D, Berlin J, Morton S (2000) Meta-analysis of observational studies in epidemiology. A proposal for reporting. J Am Med Assoc 283:2008–2012CrossRefGoogle Scholar
  49. Tabák AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M (2012) Prediabetes: a high-risk state for diabetes development. Lancet 379:2279–2290CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tayama J, Li J, Munakata M (2016) Working long hours is associated with higher prevalence of diabetes in urban male Chinese workers: the Rosai Karoshi Study. Stress Health 32:84–87. doi:10.1002/smi.2580 CrossRefPubMedGoogle Scholar
  51. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. doi:10.1056/NEJM200105033441801 CrossRefPubMedGoogle Scholar
  52. Vaalavuo M (2015) Deterioration in health: what is the role of unemployment and poverty? Scand J Public Health 44:347–353. doi:10.1177/1403494815623654 CrossRefGoogle Scholar
  53. Vågerö D, Garcy AM (2016) Does unemployment cause long-term mortality? Selection and causation after the 1992–96 deep Swedish recession. Eur J Public Health. doi:10.1093/eurpub/ckw053 PubMedPubMedCentralGoogle Scholar
  54. Virtanen M, Ferrie JE, Tabak AG, Akbaraly TN, Vahtera J, Singh-Manoux A, Kivimäki M (2014) Psychological distress and incidence of type 2 diabetes in high-risk and low-risk populations: the Whitehall II cohort study. Diabetes Care 37:2091–2097. doi:10.2337/dc13-2725 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Waddell G, Burton KA (2006) Is work good for your health and well-being?. TSO, LondonGoogle Scholar
  56. World Bank (2016) Labor force participation rate, female (% of female population ages 15 +) (modeled ILO estimate). http://data.worldbank.org/indicator/SL.TLF.CACT.FE.ZS. Accessed 28 Nov 2016
  57. World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complication. Report of a WHO consultation. Part 1: diagnosis and classification of diabetes mellitus. World Health Organization, Geneva, Report No 99.2Google Scholar
  58. World Health Organization (2013) Diagnostic criteria and classification of hyperglycaemia first detected in pregnancyGoogle Scholar
  59. Zhang H, Xu W, Dahl AK, Xu Z, Wang H-X, Qi X (2013) Relation of socio-economic status to impaired fasting glucose and type 2 diabetes: Findings based on a large population-based cross-sectional study in Tianjin, China. Diabet Med 30:e157–e162. doi:10.1111/dme.12156 CrossRefPubMedGoogle Scholar

Copyright information

© Swiss School of Public Health (SSPH+) 2017

Authors and Affiliations

  • Tuulia Varanka-Ruuska
    • 1
    • 2
  • Nina Rautio
    • 1
    • 3
  • Heli Lehtiniemi
    • 1
  • Jouko Miettunen
    • 1
    • 4
  • Sirkka Keinänen-Kiukaanniemi
    • 1
    • 3
    • 4
    • 5
  • Sylvain Sebert
    • 1
    • 6
    • 7
  • Leena Ala-Mursula
    • 1
  1. 1.Center for Life Course Health ResearchUniversity of OuluOuluFinland
  2. 2.Kallio Primary Health Care UnitYlivieskaFinland
  3. 3.Unit of Primary Health CareOulu University HospitalOuluFinland
  4. 4.Medical Research Center OuluOulu University Hospital and University of OuluOuluFinland
  5. 5.Health Center of OuluOuluFinland
  6. 6.Biocenter OuluUniversity of OuluOuluFinland
  7. 7.Department of Genomics of Complex DiseasesImperial College LondonLondonUK

Personalised recommendations