International Journal of Public Health

, Volume 62, Issue 7, pp 729–738 | Cite as

Short-term effects of fine particulate matter pollution on daily health events in Latin America: a systematic review and meta-analysis

  • Laís Fajersztajn
  • Paulo Saldiva
  • Luiz Alberto Amador Pereira
  • Victor Figueiredo Leite
  • Anna Maria Buehler



Ambient air pollution is among the leading risks for health worldwide and by 2050 will largely overcome deaths due to unsafe sanitation and malaria, but local evidence from Latin America (LA) is scarce. We aimed to summarize the effect of short-term exposure to fine particulate air pollution (PM2.5) on morbidity and mortality in Latin America and evaluate evidence coverage and quality, using systematic review and meta-analysis.


The comprehensive search (six online databases and hand-searching) identified studies investigating the short-term associations between PM2.5 and daily health events in LA. Two reviewers independently accessed the internal validity of the studies and used random-effect models in the meta-analysis.


We retrieved 1628 studies. Nine were elected for the qualitative analysis and seven for the quantitative analyses. Each 10 µg/m3 increments in daily PM2.5 concentrations was significantly associated with increased risk for respiratory and cardiovascular mortality in all-ages (polled RR = 1.02, 95% CI, 1.02–1.02 and RR = 1.01, 95% CI , 1.01–1.02, respectively).


Short-term exposure to PM2.5 in LA is significantly associated with increased risk for respiratory and cardiovascular mortality. Evidence is concentrated in few cities and some presented high risk of bias.


Air pollution Particulate matter Fine particulate matter PM2.5 Mortality Latin America Systematic review and meta-analysis 


Compliance with ethical standards

Ethical statement

The present manuscript is an original work, has not been previously published whole or in part, and is not under consideration for publication elsewhere. We did not fabricate data. We did not present data, text or theories from other authors as if they are ours (no “plagiarism”). All authors contributed sufficiently to the scientific work, read the manuscript, agreed the work is ready for submission to a journal and accepted responsibility for the manuscript’s content. All authors do not present actual or potential conflicts of interest regarding the submitted.

Supplementary material

38_2017_960_MOESM1_ESM.docx (316 kb)
Supplementary material 1 (DOCX 315 KB)


  1. Adar SD, Filigrana PA, Clements N, Peel JL (2014) Ambient coarse particulate matter and human health: A systematic review and meta-analysis Curr Environ Heal Reports 1:258–274; doi: 10.1007/s40572-014-0022-z.CrossRefGoogle Scholar
  2. Anderson H, Atkinson R, Peacock J, Marston L, Konstantinou K (2004) Meta-analysis of time-series studies and panel studies of particulate matter (PM) and ozone (O3). Rep. a WHO Task Gr. 1–68.Google Scholar
  3. Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA (2014) Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax 69:660–665. doi: 10.1136/thoraxjnl-2013-204492 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bell ML, Samet JM, Dominici F (2004) Time-series studies of particulate matter. Annu Rev Public Health 25:247–280. doi: 10.1146/annurev.publhealth.25.102802.124329 CrossRefPubMedGoogle Scholar
  5. Borja-Aburto VH, Castillejos M, Gold DR, Bierzwinski S, Loomis D (1998) Mortality and ambient fine particles in southwest Mexico City, 1993–1995. Environ Health Perspect 106:849–855CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brauer M, Amann M, Burnett RT, Cohen A, Dentener F, Ezzati M et al (2012) Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ Sci Technol 46:652–660. doi: 10.1021/es2025752 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Cesar ACG, Nascimento LFC, De Carvalho JA, Gobbo Cesar AC, Nascimento LFC, de Carvalho Jr JÁ (2013) Association between exposure to particulate matter and hospital admissions for respiratory diseases in children. Rev Saude Publica 47:1209–1212. doi: 10.1590/S0034-8910.2013047004713 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dales RE, Cakmak S, Vidal CB (2010) Air pollution and hospitalization for venous thromboembolic disease in Chile. J Thromb Haemost 8:669–674. doi: 10.1111/j.1538-7836.2010.03760.x CrossRefPubMedGoogle Scholar
  9. Dominici F, Peng RD, Barr CD, Bell ML (2012) Single-pollutant to a multi-pollutant approach. Epidemiology 21:187–194. doi: 10.1097/EDE.0b013e3181cc86e8.Protecting CrossRefGoogle Scholar
  10. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. doi: 10.1136/bmj.316.7129.469 CrossRefPubMedPubMedCentralGoogle Scholar
  11. GBD 2015 Risk Factors Collaborators (2016) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1659–1724. doi: 10.1016/S0140-6736(16)31679-8
  12. Green J, Sánchez S (2012) Air quality in Latin America: an overview. Clean air Inst. 1–28. doi: 10.1017/CBO9781107415324.004
  13. Health Effects Institute (2002) Understanding the Health Effects of Components of the Particulate Matter Mix: Progress and Next StepsGoogle Scholar
  14. Higgins J, Green S (2011) Cochrane handbook for systematic reviews of interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration.Google Scholar
  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses BMJ. Br Med J 327:557–560. doi: 10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  16. Ignotti E, Hacon SS, Junger WL, Mourão D, Longo K, FreitasS, et a. (2010) Air pollution and hospital admissions for respiratory diseases in the subequatorial Amazon: a time series approach Cad Saúde Pública 26(4):747–761; doi: 10.1590/S0102-311X2010000400017
  17. Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S et al (2014) The Navigation Guide - evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect 122:1040–1051. doi: 10.1289/ehp.1307923 PubMedPubMedCentralGoogle Scholar
  18. Loomis D, Castillejos M, Gold DR, McDonnell W, Borja-Aburto VH (1999) Air pollution and infant mortality in Mexico City. Epidemiology 10:118–123. doi: 10.1097/00001648-199903000-00006 CrossRefPubMedGoogle Scholar
  19. Ministério do Meio Ambiente (2014) 1° diagnóstico da rede de monitoramento da qualidade do ar no Brasil. 267.Google Scholar
  20. Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P (2009) Preferred reporting items for systematic reviews and meta-analyses: The PRISMA Statement (Reprinted from Annals of Internal Medicine). Phys Ther 89:873–880. doi: 10.1371/journal.pmed.1000097 PubMedGoogle Scholar
  21. Organisation for Economic Co-operation and Development (2012) Environmental outlook to 2050: the consequences of inaction. The Organisation for Economic Co-operation and Development [online], outlookto2050theconsequencesofinaction.htm
  22. Pope CA, Dockery DW, Chow JC, Watson JG, Mauderly JL, Costa DL, et al. (2006) Health Effects of Fine Particulate Air Pollution: Lines that Connect J. Air Waste Manage Assoc 56:1368–1380; doi: 10.1080/10473289.2006.10464545 CrossRefGoogle Scholar
  23. Reyna MA, Bravo ME, López R, Nieblas EC, Nava ML (2012) Relative risk of death from exposure to air pollutants: a short-term (2003–2007) study in Mexicali, Baja California, México. Int J Environ Health Res 22:370–386. doi: 10.1080/09603123.2011.650153 CrossRefPubMedGoogle Scholar
  24. Romieu I, Gouveia N, Cifuentes LA, de Leon AP, Junger W, Vera J, et al (2012) Multicity study of air pollution and mortality in Latin America (the ESCALA study) Res Rep Health Eff Inst 5–86Google Scholar
  25. Sanhueza PH, Vargas CR, Jiménez J.P (1998) Daily mortality in Santiago and its relation with air pollution. Rev Méd Chile 127:235–242Google Scholar
  26. Shah AS V, Lee KK, McAllister DA, Hunter A, Nair H, Whiteley W, et al. (2015) Short term exposure to air pollution and stroke: systematic review and meta-analysis BMJ 350:h1295. doi: 10.1136/bmj.h1295 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sheehan MC, Lam J (2015) Use of systematic review and meta-analysis in environmental health epidemiology: a systematic review and comparison with guidelines Curr Environ Heal Rep 2:272–283; doi: 10.1007/s40572-015-0062-z CrossRefGoogle Scholar
  28. Silva AM da, Mattos IE, Ignotti E, de Hacon SS (2013) Particulate matter originating from biomass burning and respiratory. Rev Saude Publica 47:345–352. doi: 10.1590/S0034-8910.2013047004410 CrossRefPubMedGoogle Scholar
  29. Stroup DF (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Jama 283:2008. doi: 10.1001/jama.283.15.2008 CrossRefPubMedGoogle Scholar
  30. Valdes A, Zanobetti A, Halonen JI, Cifuentes L, Morata D, Schwartz J (2012) Elemental concentrations of ambient particles and cause specific mortality in Santiago, Chile: a time series study. Environ Health 11:82. doi: 10.1186/1476-069X-11-82 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC et al (2016) Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ Sci Technol 50:3762–3772. doi: 10.1021/acs.est.5b05833 CrossRefPubMedGoogle Scholar
  32. World Health Organization (2006) WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005: summary of risk assessment. Geneva World Heal Organ 1–22; doi: 10.1016/0004-6981(88)90109-6
  33. World Health Organization (2015) WHO Expert Consultation: available evidence for the future update of the WHO Global Air Quality Guidelines (AQGs).10Google Scholar

Copyright information

© Swiss School of Public Health (SSPH+) 2017

Authors and Affiliations

  • Laís Fajersztajn
    • 1
    • 2
  • Paulo Saldiva
    • 1
    • 2
  • Luiz Alberto Amador Pereira
    • 3
  • Victor Figueiredo Leite
    • 4
  • Anna Maria Buehler
    • 5
  1. 1.Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of MedicineUniversity of São PauloSão PauloBrazil
  2. 2.Institute for Advanced Studies of the University of São Paulo-IEASão PauloBrazil
  3. 3.Collective Health Pos-Graduation ProgramCatholic University of SantosSantosBrazil
  4. 4.Institute of Physical Medicine and RehabilitationUniversity of São PauloSão PauloBrazil
  5. 5.Health Technology Assessment Unit, Institute of Health Education and ScienceGerman Hospital Oswaldo CruzSão PauloBrazil

Personalised recommendations