International Journal of Public Health

, Volume 58, Issue 1, pp 3–11 | Cite as

The embodiment of adverse childhood experiences and cancer development: potential biological mechanisms and pathways across the life course

  • Michelle Kelly-Irving
  • Laurence Mabile
  • Pascale Grosclaude
  • Thierry Lang
  • Cyrille Delpierre
Review

Abstract

Objectives

To explore current evidence of the physiological embedding of stress to discuss whether adverse childhood experiences (ACE) causing chronic or acute stress responses may alter fundamental biological functions.

Methods

A non-systematic review of the literature was carried out using keyword searches in Pubmed and the web of science from May to October 2011. In reference to the literature identified, we examine the potential biological pathways potentially linking exposure to ACE and cancer development and progression in adulthood.

Results

These mechanisms, in interaction with social position, and mediated by subsequent environmental exposures, may ultimately lead to the development of cancer. The experience of acute or chronic stressors during sensitive periods of childhood development which can induce several known biological responses, are likely to have an impact on subsequent biological and behavioural functions depending on the timing of initial exposures, and subsequently mediated by later exposures. For this reason, childhood exposure to adversity is a likely source of both acute and chronic stressors, and can be examined as an important initial exposure on a pathway towards adult ill health.

Conclusions

Such pathways justify a life course approach to understanding cancer aetiology, which may have its origins early in life.

Keywords

Adverse childhood experiences Psychosocial stress Cancer Life course Socio-economic Inequalities 

References

  1. Adler NE, Stewart J (2010) Preface to the biology of disadvantage: socioeconomic status and health. Ann NY Acad Sci 1186:1–4Google Scholar
  2. Anda RF et al (1999) Adverse childhood experiences and smoking during adolescence and adulthood. JAMA 282(17):1652–1658PubMedCrossRefGoogle Scholar
  3. Anda RF et al (2006) The enduring effects of abuse and related adverse experiences in childhood. A convergence of evidence from neurobiology and epidemiology. Eur Arch Psychiatry Clin Neurosci 256(3):174–186PubMedCrossRefGoogle Scholar
  4. Anda RF et al (2002) Adverse childhood experiences, alcoholic parents, and later risk of alcoholism and depression. Psychiatr Serv 53(8):1001–1009PubMedCrossRefGoogle Scholar
  5. Anderson V et al (2009) Childhood brain insult: can age at insult help us predict outcome? Brain 132(Pt 1):45–56. doi:10.1093/brain/awn293 PubMedGoogle Scholar
  6. Antoni MH et al (2006a) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248. doi:10.1038/nrc1820 PubMedCrossRefGoogle Scholar
  7. Antoni MH et al (2006b) Opinion—the influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248. doi:10.1038/nrc1820 PubMedCrossRefGoogle Scholar
  8. Bailey DBJ, Bruer JT, Symons FJ, Lichtman JW (eds) (2001) Critical thinking about critical periods. Paul H. Brookes Publishing Co., BaltimoreGoogle Scholar
  9. Bale TL (2006) Stress sensitivity and the development of affective disorders. Horm Behav 50(4):529–533. doi:10.1016/j.yhbeh.2006.06.033 PubMedCrossRefGoogle Scholar
  10. Bale TL et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68(4):314–319. doi:10.1016/j.biopsych.2010.05.028 PubMedCrossRefGoogle Scholar
  11. Barker DJP, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081PubMedCrossRefGoogle Scholar
  12. Bergelt C, Prescott E, Gronbaek M, Koch U, Johansen C (2006) Stressful life events and cancer risk. Br J Cancer 95(11):1579–1581. doi:10.1038/sj.bjc.6603471 PubMedCrossRefGoogle Scholar
  13. Borghol N et al (2011) Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol. doi:10.1093/ije/dyr147 PubMedGoogle Scholar
  14. Brown DW et al (2010) Adverse childhood experiences are associated with the risk of lung cancer: a prospective cohort study. BMC Public Health 10:20. doi:10.1186/1471-2458-10-20 PubMedCrossRefGoogle Scholar
  15. Bruer JT (2001) A critical and sensitive period primer. In: Bailey DB Jr, Bruer JT, Symons FJ, Lichtman JW (eds) Critical thinking about critical periods. Paul H. Brookes, Baltimore, p 299Google Scholar
  16. Brunner E, Marmot M (2001) Social organization, stress, and health. In: Marmot M, Wilkinson RG (eds) Social determinants of health. Oxford University Press, Oxford, pp 17–43Google Scholar
  17. Chung EK, Nurmohamed L, Mathew L, Elo IT, Coyne JC, Culhane JF (2010) risky health behaviors among mothers-to-be: the impact of adverse childhood experiences. Acad Pediatr 10(4):245–251PubMedCrossRefGoogle Scholar
  18. Clark C, Caldwell T, Power C, Stansfeld SA (2010) Does the influence of childhood adversity on psychopathology persist across the lifecourse? A 45-year prospective epidemiologic study. Ann Epidemiol 20(5):385–394. doi:10.1016/j.annepidem.2010.02.008 PubMedCrossRefGoogle Scholar
  19. Danese A et al (2009) Adverse childhood experiences and adult risk factors for age-related disease depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 163(12):1135–1143PubMedCrossRefGoogle Scholar
  20. Daw NW (1997) Critical periods and strabismus: what questions remain? Optom Vis Sci 74(9):690–694PubMedCrossRefGoogle Scholar
  21. Delpierre C, Kelly-Irving M (2011) To what extent are biological pathways useful when aiming to reduce social inequalities in cancer? Eur J Public Health 21(4):398–399. doi:10.1093/eurpub/ckr076 PubMedCrossRefGoogle Scholar
  22. Dong M et al (2004) Insights into causal pathways for ischemic heart disease: adverse childhood experiences study. Circulation 110(13):1761–1766PubMedCrossRefGoogle Scholar
  23. Dube SR, Cook ML, Edwards VJ (2010) Health-related outcomes of adverse childhood experiences in Texas, 2002. Prev Chronic Dis 7(3):A52PubMedGoogle Scholar
  24. Dube SR, Felitti VJ, Dong M, Chapman DP, Giles WH, Anda RF (2003a) Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics 111(3):564–572PubMedCrossRefGoogle Scholar
  25. Dube SR, Felitti VJ, Dong M, Giles WH, Anda EF (2003b) The impact of adverse childhood experiences on health problems: evidence from four birth cohorts dating back to. Prev Med 37(3):268–277PubMedCrossRefGoogle Scholar
  26. Duijts SFA, Zeegers MPA, Van der Borne B (2003) The association between stressful life events and breast cancer risk: a meta-analysis. Int J Cancer 107(6):1023–1029. doi:10.1002/ijc.11504 PubMedCrossRefGoogle Scholar
  27. Eden A, Gaudet F, Waghmare A, Jaenisch R (2010) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300(5618):455. doi:10.1126/science.1083557 CrossRefGoogle Scholar
  28. Feinberg AP (2004) The epigenetics of cancer etiology. Semin Cancer Biol 14(6):427–432. doi:10.1016/j.semcancer.2004.06.005 PubMedCrossRefGoogle Scholar
  29. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919 PubMedCrossRefGoogle Scholar
  30. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4(2):143–153. doi:10.1038/nrc1279nrc1279 PubMedCrossRefGoogle Scholar
  31. Felitti VJ et al (1998) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am J Prev Med 14(4):245–258PubMedCrossRefGoogle Scholar
  32. Fox SE, Levitt P, Nelson CA (2010) How the timing and quality of early experiences influence the development of brain architecture. Child Dev 81(1):28–40PubMedCrossRefGoogle Scholar
  33. Fuller-Thomson E, Brennenstuhl S (2009) Making a link between childhood physical abuse and cancer results from a regional representative survey. Cancer 115(14):3341–3350. doi:10.1002/cncr.24372 PubMedCrossRefGoogle Scholar
  34. Gidron Y, Ronson A (2008) Psychosocial factors, biological mediators, and cancer prognosis: a new look at an old story. Curr Opin Oncol 20(4):386–392PubMedCrossRefGoogle Scholar
  35. Gluckman PD, Low FM, Buklijas T, Hanson MA, Beedle AS (2011) How evolutionary principles improve the understanding of human health and disease. Evol Appl 4(2):249–263. doi:10.1111/j.1752-4571.2010.00164.x CrossRefGoogle Scholar
  36. Hochberg Z et al (2011) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32(2):159–224. doi:10.1210/er.2009-0039 PubMedCrossRefGoogle Scholar
  37. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8(4):253–262. doi:10.1038/nrg2045 PubMedCrossRefGoogle Scholar
  38. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428PubMedGoogle Scholar
  39. Kelly Y, Sacker A, Del Bono E, Francesconi M, Marmot M (2011) What role for the home learning environment and parenting in reducing the socioeconomic gradient in child development? Findings from the Millennium Cohort Study. Arch Dis Child 96(9):832–877. doi:10.1136/adc.2010.195917 PubMedCrossRefGoogle Scholar
  40. Kiecolt-Glaser JK, Glaser R (1999) Psychoneuroimmunology and cancer: fact or fiction? Eur J Cancer 35(11):1603–1607PubMedCrossRefGoogle Scholar
  41. Korpimaki SK, Sumanen MPT, Sillanmaki LH, Mattila KJ (2010) Cancer in working-age is not associated with childhood adversities. Acta Oncol 49(4):436–440. doi:10.3109/02841860903521103 PubMedCrossRefGoogle Scholar
  42. Laird PW et al (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81(2):197–205. doi:10.1016/0092-8674(95)90329-1 PubMedCrossRefGoogle Scholar
  43. Lutgendorf SK, Sood AK, Antoni MH (2010) Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol 28(26):4094–4099. doi:10.1200/jco.2009.26.9357 PubMedCrossRefGoogle Scholar
  44. Matthews KA, Gallo LC, Taylor SE (2010) Are psychosocial factors mediators of socioeconomic status and health connections? A progress report and blueprint for the future biology. Ann NY Acad Sci 1186:146–173Google Scholar
  45. Mayes LC, Swain JE, Leckman JF (2005) Parental attachment systems: neural circuits, genes, and experiential contributions to parental engagement. Clin Neurosci Res 4(5–6):301–313. doi:10.1016/j.cnr.2005.03.009 CrossRefGoogle Scholar
  46. McCall RB, Plemons BW (2001) The concept of critical periods and their implications for early childhood services. In: Bailey DB Jr, Bruer JT, Symons FJ, Lichtman JW (eds) Critical thinking about critical periods. Paul H. Brookes, Baltimore, p 299Google Scholar
  47. McGowan PO et al (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12(3):342–348. doi:10.1038/nn.2270 PubMedCrossRefGoogle Scholar
  48. McGowan PO, Szyf M (2010) The epigenetics of social adversity in early life: implications for mental health outcomes. Neurobiol Dis 39(1):66–72. doi:10.1016/j.nbd.2009.12.026 PubMedCrossRefGoogle Scholar
  49. Meaney MJ et al (1994) Early environmental programming hypothalamic–pituitary–adrenal responses to stress. Semin Neurosci 6(4):247–259. doi:10.1006/smns.1994.1032 CrossRefGoogle Scholar
  50. Metcalfe C, Smith GD, Macleod J, Hart C (2007) The role of self-reported stress in the development of breast cancer and prostate cancer: a prospective cohort study of employed males and females with 30 years of follow-up. Eur J Cancer 43(6):1060–1065. doi:10.1016/j.ejca.2007.01.027 PubMedCrossRefGoogle Scholar
  51. Nielsen NR, Zhang ZF, Kristensen TS, Netterstrom B, Schnohr P, Gronbaek M (2005) Self reported stress and risk of breast cancer: prospective cohort study. BMJ 331(7516):548–550. doi:10.1136/bmj.38547.638183.06 Google Scholar
  52. Nise MS, Falaturi P, Erren TC (2010) Epigenetics: origins and implications for cancer epidemiology. Med Hypotheses 74(2):377–382. doi:10.1016/j.mehy.2009.09.008 PubMedCrossRefGoogle Scholar
  53. Ollonen P, Lehtonen J, Eskelinen M (2005) Stressful and adverse life experiences in patients with breast symptoms; a prospective case–control study in Kuopio, Finland. Anticancer Res 25(1B):531–536Google Scholar
  54. Potischman N, Troisi R, Vatten LJ (2004) A life course approach to cancer epidemiology. In: Kuh D, Ben-Shlomo Y (eds) A life course approach to chronic disease epidemiology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  55. Rosenman S, Rodgers B (2004) Childhood adversity in an Australian population. Soc Psychiatry Psychiatr Epidemiol 39(9):695–702. doi:10.1007/s00127-004-0802-0 PubMedCrossRefGoogle Scholar
  56. Schraub S, Sancho-Garnier H, Velten M (2009) Should psychological events be considered cancer risk factors? Rev Epidemiol Sante Publique 57(2):113–123. doi:10.1016/respe.2008.12.012 PubMedCrossRefGoogle Scholar
  57. Seeman T, Epel E, Gruenewald T, Karlamangla A, McEwen BS (2010) Socio-economic differentials in peripheral biology: cumulative allostatic load. Ann NY Acad Sci 1186:223–239Google Scholar
  58. Sweeting H, West P (1995) Family life and health in adolescence: a role for culture in the health inequalities debate. Soc Sci Med 40(2):163–175. doi:10.1016/0277-9536(94)e0051-s PubMedCrossRefGoogle Scholar
  59. Szyf M (2009) The early life environment and the epigenome. Biochim Biophys Acta 1790(9):878–885. doi:10.1016/j.bbagen.2009.01.009 PubMedCrossRefGoogle Scholar
  60. Thaker PH et al (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944. doi:10.1038/nm1447 PubMedCrossRefGoogle Scholar
  61. Thomas C, Hypponen E, Power C (2008) Obesity and type 2 diabetes risk in midadult life: the role of childhood adversity. Pediatrics 121(5):E1240–E1249. doi:10.1542/peds.2007-2403 PubMedCrossRefGoogle Scholar
  62. Tremblay RE (2010) Developmental origins of disruptive behaviour problems: the ‘original sin’ hypothesis, epigenetics and their consequences for prevention. J Child Psychol Psychiatry 51(4):341–367. doi:10.1111/j.1469-7610.2010.02211.x PubMedCrossRefGoogle Scholar
  63. Weaver ICG et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854. doi:10.1038/nn1276 PubMedCrossRefGoogle Scholar
  64. Wilkinson RG (1999) Health, hierarchy, and social anxiety. In: Adler NE, Marmot M, McEwen B, Stewart J (eds) Socioeconomic status and health in industrial nations—social, psychological, and biological pathways. Ann NY Acad Sci 896:48–63Google Scholar
  65. Wong CC, Mill J, Fernandes C (2011) Drugs and addiction: an introduction to epigenetics. Addiction 106(3):480–489. doi:10.1111/j.1360-0443.2010.03321.x PubMedCrossRefGoogle Scholar
  66. Yamada Y et al (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA 102(38):13580–13585. doi:10.1073/pnas.0506612102 PubMedCrossRefGoogle Scholar

Copyright information

© Swiss School of Public Health 2012

Authors and Affiliations

  • Michelle Kelly-Irving
    • 1
    • 2
  • Laurence Mabile
    • 1
    • 2
  • Pascale Grosclaude
    • 3
    • 4
  • Thierry Lang
    • 1
    • 2
    • 3
  • Cyrille Delpierre
    • 1
    • 2
  1. 1.INSERM, U1027, Faculté de MédecineToulouse CedexFrance
  2. 2.Université Toulouse III Paul-Sabatier, UMR1027Toulouse CedexFrance
  3. 3.CHU Toulouse, Hôpital Purpan, DépartementToulouse CedexFrance
  4. 4.Réseau de Cancérologie de Midi-PyrénéesToulouse CedexFrance

Personalised recommendations