Skip to main content

On age-specific variations in income-related inequalities in diabetes, hypertension and obesity

Abstract

Objective

This article examines whether the social health gradients in diabetes, hypertension and obesity for men and women vary significantly across different age groups.

Methods

We use a pooled sample of German survey data from the years 2002 and 2006 with a total of 87,601 observations. We employ a varying Wagstaff index derived from the class of Gini-type concentration indices to estimate age-specific income-related health inequalities.

Results

We find significant health disadvantages among poor women in mid-age, but no significant age-specific income-related health inequalities among men. Some leveling of inequalities in diabetes is observed.

Conclusions

The results suggest that variations in age-specific inequalities are unlikely to be a purely artificial result of health-related selection into retirement or mortality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Balia S, Jones AM (2008) Mortality, lifestyle and socio-economic status. J Health Econ 27(1):1–26. doi:10.1016/j.jhealeco.2007.03.001

    PubMed  Article  Google Scholar 

  2. Banks J, Marmot M, Oldfield Z, Smith JP (2007) The SES health gradient on both sides of the Atlantic. IZA Discussion Papers 2539, Institute for the Study of Labor (IZA)

  3. Beckett M (2000) Converging health inequalities in later life—an artifact of mortality selection. J Health Soc Behav 41(1):106–119

    PubMed  Article  CAS  Google Scholar 

  4. Boersch-Supan A, Wilke CB (2004) The German public pension system: how it was, how it will be. Working Paper 10525, National Bureau of Economic Research

  5. Brockmann H, Müller R, Helmert U (2009) Time to retire—time to die? A prospective cohort study of the effects of early retirement on long-term survival. Soc Sci Med 69(2):160–164. doi:10.1016/j.socscimed.2009.04.009

    PubMed  Article  Google Scholar 

  6. Case AC, Deaton A (2005) Broken down by work and sex: how our health declines. In: Wise DA (ed) Analyses in the economics of aging, chap 6. Chicago University Press, Chicago, pp 185–205

    Google Scholar 

  7. Deaton AS, Paxson CH (1998) Aging and inequality in income and health. Am Econ Rev 88(2):248–253

    Google Scholar 

  8. Dupre ME (2007) Educational differences in age-related patterns of disease: reconsidering the cumulative disadvantage and age-as-leveler hypotheses. J Health Soc Behav 48(1):1–15

    PubMed  Article  Google Scholar 

  9. Haffner SM (2006) Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity (Silver Spring) 14 Suppl 3:121S–127S. doi:10.1038/oby.2006.291

    Article  Google Scholar 

  10. Harati H, Hadaegh F, Momenan AA, Ghanei L, Bozorgmanesh MR, Ghanbarian A, Mirmiran P, Azizi F (2010) Reduction in incidence of type 2 diabetes by lifestyle intervention in a middle eastern community. Am J Prev Med 38(6):628.e1–636.e1. doi:10.1016/j.amepre.2010.03.003

    Article  Google Scholar 

  11. Hastie T, Tibshirani R (1993) Varying-coefficient models. J R Stat Soc Ser B Stat Methodol 55(4):757–796

    Google Scholar 

  12. Human Mortality Database (2011) University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). http://www.mortality.org or http://www.humanmortality.de (data downloaded on October 13th, 2011)

  13. Islam MK, Gerdtham UG, Clarke P, Burström K (2010) Does income-related health inequality change as the population ages? Evidence from Swedish panel data. Health Econ 19(3):334–349. doi:10.1002/hec.1479

    PubMed  Article  Google Scholar 

  14. Kakwani N, Wagstaff A, van Doorslaer E (1997) Socioeconomic inequalities in health: measurement, computation, and statistical inference. J Econom 77(1):87–103

    Article  Google Scholar 

  15. Kelly-Irving M, Delpierre C, Schieber AC, Lepage B, Rolland C, Afrité A, Pascal J, Cases C, Lombrail P, Thierry L (2011) Do general practitioners overestimate the health of their patients with lower education? Soc Sci Med 73(9):1416–1421. doi:10.1016/j.socscimed.2011.07.031

    PubMed  Article  Google Scholar 

  16. Kim J, Durden E (2007) Socioeconomic status and age trajectories of health. Soc Sci Med 65(12):2489–2502. doi:10.1016/j.socscimed.2007.07.022

    PubMed  Article  Google Scholar 

  17. Kim J, Miech R (2009) The Black-White difference in age trajectories of functional health over the life course. Soc Sci Med 68(4):717–725. doi:10.1016/j.socscimed.2008.12.021

    PubMed  Article  Google Scholar 

  18. Konings P, Harper S, Lynch J, Hosseinpoor AR, Berkvens D, Lorant V, Geckova A, Speybroeck N (2010) Analysis of socioeconomic health inequalities using the concentration index. Int J Public Health 55(1):71–74. doi:10.1007/s00038-009-0078-y

    PubMed  Article  Google Scholar 

  19. Kunst AE, Mackenbach JP (1994) The size of mortality differences associated with educational level in nine industrialized countries. Am J Public Health 84(6):932–937

    PubMed  Article  CAS  Google Scholar 

  20. Li Q, Huang CJ, Li D, Fu TT (2002) Semiparametric smooth coefficient models. J Bus Econ Stat 20(3):412–422

    Article  Google Scholar 

  21. Lynch SM (2003) Cohort and life-course patterns in the relationship between education and health: a hierarchical approach. Demography 40(2):309–331

    PubMed  Article  Google Scholar 

  22. McKinnon B, Harper S, Moore S (2011) Decomposing income-related inequality in cervical screening in 67 countries. Int J Public Health 56(2):139–152. doi:10.1007/s00038-010-0224-6

    PubMed  Article  Google Scholar 

  23. Mirowsky J, Ross CE (2005) Education, cumulative advantage, and health. Aging Int 30:27–62

    Article  Google Scholar 

  24. Potthoff P, Heinemann LAJ, Güther B (2004) A household panel as a tool for cost-effective health-related population surveys: validity of the "Healthcare Access Panel". Ger Med Sci 2(Doc05):1–8

    Google Scholar 

  25. Prus SG (2004) A life course perspective on the relationship between socio-economic status and health: testing the divergence hypothesis. Can J Aging 23 Suppl 1:S145–S153

    PubMed  Article  Google Scholar 

  26. Puska P (2010) From Framingham to North Karelia: from descriptive epidemiology to public health action. Prog Cardiovasc Dis 53(1):15–20. doi:10.1016/j.pcad.2010.01.003

    PubMed  Article  Google Scholar 

  27. Ross CE, Wu CL (1996) Education, age, and the cumulative advantage in health. J Health Soc Behav 37(1):104–120

    PubMed  Article  CAS  Google Scholar 

  28. Siegel M, Mosler K (2010) On the life course perspective in income related health inequalities: a semiparametric approach. Discussion Papers in Statistics and Econometrics 3/2010

  29. van Doorslaer E, Koolman X, Jones AM (2004) Explaining income-related inequalities in doctor utilisation in Europe. Health Econ 13(7):629–647. doi:10.1002/hec.919

    PubMed  Article  Google Scholar 

  30. van Doorslaer E, Masseria C, Koolman X, OECD Health Equity Research Group (2006) Inequalities in access to medical care by income in developed countries. CMAJ 174(2):177–183

    PubMed  Google Scholar 

  31. van Kippersluis H, van Ourti T, O’Donnell O, van Doorslaer E (2009) Health and income across the life cycle and generations in Europe. J Health Econ 28(4):818–830. doi:10.1016/j.jhealeco.2009.04.001

    PubMed  Article  Google Scholar 

  32. van Kippersluis H, O’Donnell O, van Doorslaer E, van Ourti T (2010) Socioeconomic differences in health over the life cycle in an Egalitarian country. Soc Sci Med 70(3):428–438. doi:10.1016/j.socscimed.2009.10.020

    PubMed  Article  Google Scholar 

  33. von Weizsäcker RK (1996) Distributive implications of an aging society. Eur Econ Rev 40(3–5):729–746. doi:10.1016/0014-2921(95)00085-2

    Article  Google Scholar 

  34. Wagstaff A (2005) The bounds of the concentration index when the variable of interest is binary, with an application to immunization inequality. Health Econ 14(4):429–432. doi:10.1002/hec.953

    PubMed  Article  Google Scholar 

  35. Wagstaff A (2011) The concentration index of a binary outcome revisited. Health Econ 20(10):1155–1160. doi:10.1002/hec.1752

    PubMed  Article  Google Scholar 

  36. Wagstaff A, Paci P, van Doorslaer E (1991) On the measurement of inequalities in health. Soc Sci Med 33(5):545–557

    PubMed  Article  CAS  Google Scholar 

  37. WHO (2003) Obesity and overweight: global strategy on diet, physical activity and health. World Health Organization Fact Sheet

  38. WHO (2009) Global database on body mass index: BMI classification. The World Health Organization. http://apps.who.int/bmi/index.jsp?introPage=intro_3.html. Accessed 15 Sept 2009

  39. Wildman J (2003) Income related inequalities in mental health in Great Britain: analysing the causes of health inequality over time. J Health Econ 22(2):295–312. doi:10.1016/S0167-6296(02)00101-7

    PubMed  Article  Google Scholar 

  40. Wingerter C (2010) Später in den ruhestand? Tech. rep., German Federal Statistical Office, Wiesbaden

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Siegel.

Additional information

This article is part of the special issue “Life course influences on health and health inequalities: moving towards a Public Health perspective”.

Appendix: Statistical inference

Appendix: Statistical inference

The local standard error σ C (z) of the varying concentration index can be approximated by estimating β *0 and β *1 from Eq. (1) with the untransformed health variable y in place of \(\left(2\sigma_{r}^{2}(z)/\mu_{y}(z)\right)y.\) One may then take advantage of the fact that β *0 (z) + μ r (z *1 (z) = μ y (z) and apply the δ method to \(C(z)=2\sigma_{r}^{2}(z)\beta^{*}_{1}(z) \left[\beta^{*}_{0}(z)+\mu_{r}(z)\beta^{*}_{1}(z)\right]^{-1}\) (Kakwani et al. 1997; Siegel and Mosler 2010; Wildman 2003). The standard error σ W (z) for W(z) can be estimated analogously (Siegel and Mosler 2010). Note that μ r (z) and σ 2 r (z) need not be considered as stochastic as they are sample independent. The error term may likely be heteroscedastic and autocorrelated (Kakwani et al. 1997; Wildman 2003; McKinnon et al. 2011); we therefore follow Siegel and Mosler (2010) and estimate local Newey-West type standard errors.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Siegel, M., Luengen, M. & Stock, S. On age-specific variations in income-related inequalities in diabetes, hypertension and obesity. Int J Public Health 58, 33–41 (2013). https://doi.org/10.1007/s00038-012-0368-7

Download citation

Keywords

  • Germany
  • Life course perspective
  • Age-specific inequality
  • Obesity
  • Hypertension
  • Diabetes