Smooth and Strong PCPs


Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of random queries, such that any correct claim has a proof that is always accepted, and incorrect claims are rejected with high probability (regardless of the given alleged proof). We consider two possible features of PCPs:

  • \(\circ \quad\)A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional to its distance from some correct proof of that claim.

  • \(\circ \quad\)A PCP is smooth if each location in a proof is queried with equal probability.

We prove that all sets in \(\mathcal{NP}\) have PCPs that are both smooth and strong, are of polynomial length and can be verified based on a constant number of queries. This is achieved by following the proof of the PCP theorem of Arora et al. (JACM 45(3):501–555, 1998), providing a stronger analysis of the Hadamard and Reed–Muller based PCPs and a refined PCP composition theorem. In fact, we show that any set in \(\mathcal{NP}\) has a smooth strong canonical PCP of Proximity (PCPP), meaning that there is an efficiently computable bijection of \(\mathcal{NP}\) witnesses to correct proofs. This improves on the recent construction of Dinur et al. (in: Blum (ed) 10th innovations in theoretical computer science conference, ITCS, San Diego, 2019) of PCPPs that are strong canonical but inherently non-smooth.

Our result implies the hardness of approximating the satisfiability of “stable” 3CNF formulae with bounded variable occurrence, where stable means that the number of clauses violated by an assignment is proportional to its distance from a satisfying assignment (in the relative Hamming metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and Salavatipour (in: Chan (ed) Proceedings of the 30th annual ACM-SIAM symposium on discrete algorithms, SODA, San Diego, 2019), suggesting a connection between the hardness of these instances and other stable optimization problems.

This is a preview of subscription content, access via your institution.


  1. 1.

    Josh Alman & Lijie Chen (2019). Efficient Construction of Rigid Matrices Using an NP Oracle. In 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, MD, USA, November 9-12, 2019, David Zuckerman, editor, 1034–1055. IEEE Computer Society

  2. 2.

    Arora, Sanjeev, Lund, Carsten, Motwani, Rajeev, Sudan, Madhu, Szegedy, Mario: Proof Verification and the Hardness of Approximation Problems. J. ACM 45(3), 501–555 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Sanjeev Arora & Shmuel Safra: Probabilistic Checking of Proofs: A New Characterization of NP. J. ACM 45(1), 70–122 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Pranjal Awasthi, Avrim Blum & Or Sheffet (2010). Stability Yields a PTAS for k-Median and k-Means Clustering. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, 309–318. IEEE Computer Society. ISBN 978-0-7695-4244-7

  5. 5.

    Awasthi, Pranjal, Blum, Avrim, Sheffet, Or: Center-based clustering under perturbation stability. Inf. Process. Lett. 112(1–2), 49–54 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy & Ali Kemal Sinop (2015). The Hardness of Approximation of Euclidean k-Means. In 31st International Symposium on Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, Lars Arge & János Pach, editors, volume 34 of LIPIcs, 754–767. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-83-5

  7. 7.

    Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan & Salil P. Vadhan (2005). Short PCPs Verifiable in Polylogarithmic Time. In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, 120–134. IEEE Computer Society. ISBN 0-7695-2364-1. URL

  8. 8.

    Ben-Sasson, Eli, Goldreich, Oded, Harsha, Prahladh, Sudan, Madhu, Vadhan, Salil P.: Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding. SIAM J. Comput. 36(4), 889–974 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Eli Ben-Sasson & Madhu Sudan: Short PCPs with Polylog Query Complexity. SIAM J. Comput. 38(2), 551–607 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Amey Bhangale, Prahladh Harsha, Orr Paradise & Avishay Tal (2020). Rigid Matrices From Rectangular PCPs. Electronic Colloquium on Computational Complexity (ECCC) 27, 75. URL

  11. 11.

    Yonatan Bilu & Nathan Linial: Lifts, Discrepancy and Nearly Optimal Spectral Gap*. Combinatorica 26(5), 495–519 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Yonatan Bilu & Nathan Linial: Are Stable Instances Easy? Combinatorics, Probability & Computing 21(5), 643–660 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Blum, Manuel, Luby, Michael, Rubinfeld, Ronitt: Self-Testing/Correcting with Applications to Numerical Problems. J. Comput. Syst. Sci. 47(3), 549–595 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Shuchi Chawla (editor) (2020). Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020. SIAM. ISBN 978-1-61197-599-4. URL

  15. 15.

    Alessandro Chiesa, Tom Gur & Igor Shinkar (2020). Relaxed Locally Correctable Codes with Nearly-Linear Block Length and Constant Query Complexity. In DBLP:confspssodasps2020, 1395–1411. URL

  16. 16.

    Dinur, Irit: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz & Shmuel Safra (2011). PCP Characterizations of NP: Toward a Polynomially-Small Error-Probability. Comput. Complex. 20(3), 413–504. URL

  18. 18.

    Irit Dinur, Oded Goldreich & Tom Gur (2019). Every Set in P Is Strongly Testable Under a Suitable Encoding. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, Avrim Blum, editor, volume 124 of LIPIcs, 30:1–30:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-095-8

  19. 19.

    Irit Dinur & Prahladh Harsha (2013). Composition of Low-Error 2-Query PCPs Using Decodable PCPs. SIAM J. Comput. 42(6), 2452–2486. URL

  20. 20.

    Irit Dinur & Omer Reingold: Assignment Testers: Towards a Combinatorial Proof of the PCP Theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Uriel Feige (1998). A Threshold of ln n for Approximating Set Cover. J. ACM 45(4), 634–652. URL

  22. 22.

    Zachary Friggstad, Kamyar Khodamoradi & Mohammad R. Salavatipour (2019). Exact Algorithms and Lower Bounds for Stable Instances of Euclidean k-MEANS. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, Timothy M. Chan, editor, 2958–2972. SIAM. ISBN 978-1-61197-548-2

  23. 23.

    Anna Gál & Andrew Mills (2012). Three-Query Locally Decodable Codes with Higher Correctness Require Exponential Length. TOCT 3(2), 5:1–5:34

  24. 24.

    Oded Goldreich (2017). Introduction to Property Testing. Cambridge University Press. ISBN 978-1-107-19405-2

  25. 25.

    Oded Goldreich, Tom Gur & Ilan Komargodski (2019). Strong Locally Testable Codes with Relaxed Local Decoders. TOCT 11(3), 17:1–17:38

  26. 26.

    Goldreich, Oded, Karloff, Howard J., Schulman, Leonard J., Trevisan, Luca: Lower bounds for linear locally decodable codes and private information retrieval. Computational Complexity 15(3), 263–296 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Oded Goldreich & Madhu Sudan: Locally testable codes and PCPs of almost-linear length. J. ACM 53(4), 558–655 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Tom Gur & Oded Lachish (2020). On the Power of Relaxed Local Decoding Algorithms. In DBLP:confspssodasps2020, 1377–1394. URL

  29. 29.

    Tom Gur, Govind Ramnarayan & Ron D. Rothblum (2018). Relaxed Locally Correctable Codes. In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, Anna R. Karlin, editor, volume 94 of LIPIcs, 27:1–27:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-060-6

  30. 30.

    Gur, Tom, Rothblum, Ron D.: Non-interactive proofs of proximity. Computational Complexity 27(1), 99–207 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    Prahladh Harsha (2004). Robust PCPs of Proximity and Shorter PCPs. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA

  32. 32.

    Yuval Ishai & Mor Weiss (2014). Probabilistically Checkable Proofs of Proximity with Zero-Knowledge. In Theory of Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, Yehuda Lindell, editor, volume 8349 of Lecture Notes in Computer Science, 121–145. Springer. ISBN 978-3-642-54241-1. URL

  33. 33.

    Jonathan Katz & Luca Trevisan (2000). On the efficiency of local decoding procedures for error-correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, F. Frances Yao & Eugene M. Luks, editors, 80–86. ACM. ISBN 1-58113-184-4

  34. 34.

    Subhash Khot (2002). Hardness Results for Coloring 3 -Colorable 3 -Uniform Hypergraphs. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, 23–32. IEEE Computer Society. ISBN 0-7695-1822-2

  35. 35.

    Or Meir (2009). Combinatorial Construction of Locally Testable Codes. SIAM J. Comput. 39(2), 491–544. URL

  36. 36.

    Thilo Mie (2009). Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann. Math. Artif. Intell. 56(3-4), 313–338. URL

  37. 37.

    Dana Moshkovitz & Ran Raz (2010). Two-query PCP with subconstant error. J. ACM 57(5), 29:1–29:29. URL

  38. 38.

    Christos H. Papadimitriou & Mihalis Yannakakis (1991). Optimization, Approximation, and Complexity Classes. Journal of Computer and System Sciences 43(3), 425–440. ISSN 0022-0000

  39. 39.

    Orr Paradise (2019). Smooth and Strong PCPs. Electronic Colloquium on Computational Complexity (ECCC) 26, 23. URL

  40. 40.

    Orr Paradise (2020). Smooth and Strong PCPs. In 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, Thomas Vidick, editor, volume 151 of LIPIcs, 2:1–2:41. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. ISBN 978-3-95977-134-4. URL

  41. 41.

    Ran Raz & Shmuel Safra (1997). A Sub-Constant Error-Probability Low-Degree Test, and a Sub-Constant Error-Probability PCP Characterization of NP. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, Frank Thomson Leighton & Peter W. Shor, editors, 475–484. ACM. ISBN 0-89791-888-6. URL

  42. 42.

    Luca Trevisan (2004). Inapproximability of Combinatorial Optimization Problems. Electronic Colloquium on Computational Complexity (ECCC) (065)

  43. 43.

    Emanuele Viola (2020). New lower bounds for probabilistic degree and AC0 with parity gates. Electronic Colloquium on Computational Complexity (ECCC) 27, 15. URL

  44. 44.

    Yekhanin, Sergey: Locally Decodable Codes. Foundations and Trends in Theoretical Computer Science 6(3), 139–255 (2012)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Orr Paradise.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paradise, O. Smooth and Strong PCPs. comput. complex. 30, 1 (2021).

Download citation


  • Interactive and probabilistic proof systems
  • Probabilistically checkable proofs
  • Hardness of approximation

Subject classification

  • 68Q15