Skip to main content
Log in

Two-closures of supersolvable permutation groups in polynomial time

computational complexity Aims and scope Submit manuscript

Abstract

The 2-closure \(\overline{G}\) of a permutation group G on \(\Omega\) is defined to be the largest permutation group on \(\Omega\), having the same orbits on \(\Omega \times \Omega\) as G. It is proved that ifG is supersolvable, then \(\overline{G}\) can be found in polynomial time in \(|\Omega|\). As a by-product of our technique, it is shown that the composition factors of \(\overline{G}\) are cyclic or alternating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  • László Babai (2018). Group, graphs, algorithms: the graph isomorphism problem. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. IV. Invited lectures, 3319–3336. World Sci. Publ., Hackensack, NJ

  • László Babai & Eugene M. Luks (1983). Canonical Labeling of Graphs. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC 83, 171183. Association for Computing Machinery, New York, NY, USA

  • Gang Chen & Ilia Ponomarenko: Coherent Configurations. Central China Normal University Press, Wuhan (2019)

    MATH  Google Scholar 

  • Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of finite groups. Oxford University Press, Eynsham (1985)

    MATH  Google Scholar 

  • John D. Dixon & Brian Mortimer (1996). Permutation groups, volume 163 of Graduate Texts in Mathematics. Springer-Verlag, New York

  • Sergei Evdokimov & Ilia Ponomarenko: Two-closure of odd permutation group in polynomial time. Discrete Math. 235(1–3), 221–232 (2001)

    MathSciNet  MATH  Google Scholar 

  • Sergei Evdokimov & Ilia Ponomarenko: Circulant graphs: recognizing and isomorphism testing in polynomial time. St. Petersbg. Math. J. 15(6), 813–835 (2004)

    Article  Google Scholar 

  • Sergei Evdokimov & Ilia Ponomarenko: Permutation group approach to association schemes. European J. Combin. 30(6), 1456–1476 (2009)

    Article  MathSciNet  Google Scholar 

  • Walter Feit (1980). Some consequences of the classification of finite simple groups. In The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), volume 37 of Proc. Sympos. Pure Math., 175–181. Amer. Math. Soc., Providence, R.I

  • Higman, Donald G.: Coherent configurations. I. Ordinary representation theory. Geometriae Dedicata 4(1), 1–32 (1975)

    MATH  Google Scholar 

  • Jones, Gareth A.: Cyclic regular subgroups of primitive permutation groups. J. Group Theory 5(4), 403–407 (2002)

    Article  MathSciNet  Google Scholar 

  • Martin W. Liebeck, Cheryl E. Praeger & Jan Saxl (1988). On the \(2\)-closures of finite permutation groups. J. London Math. Soc. (2)37(2), 241–252

  • Ponomarenko, Ilia: Graph isomorphism problem and \(2\)-closed permutation groups. Appl. Algebra Engrg. Comm. Comput. 5(1), 9–22 (1994)

    Article  MathSciNet  Google Scholar 

  • Ponomarenko, Ilia: Determination of the automorphism group of a circulant association scheme in polynomial time. Zap. Nauchn. Semin. POMI 321, 251–267 (2005)

    MATH  Google Scholar 

  • Praeger, Cheryl E., Saxl, Jan: Closures of finite primitive permutation groups. Bull. London Math. Soc. 24(3), 251–258 (1992)

    Article  MathSciNet  Google Scholar 

  • Ákos Seress (2003). Permutation group algorithms, volume 152 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge

  • Skresanov, Saveliy V.: Counterexamples to two conjectures in the Kourovka notebook. Algebra Logic 58(3), 249–253 (2019)

    Article  Google Scholar 

  • Andrey V. Vasil’ev & Dmitriy (2019). The 2-closure of a \(\frac{3}{2}\)-transitive group in polynomial time. Sib. Math. J. 60(2), 279–290 (2019)

  • Wielandt, Helmut: Finite permutation groups. Academic Press, New York-London (1964)

    MATH  Google Scholar 

  • Helmut Wielandt (1969). Permutation groups through invariant relations and invariant functions. The Ohio State University

  • Robert A. Wilson (2009). The finite simple groups, volume 251 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London

  • Jing Xu, Michael Giudici, Cai Heng Li & Cheryl E. Praeger (2011). Invariant relations and Aschbacher classes of finite linear groups. Electron. J. Combin.18(1), Paper 225

  • Xue Yu & Jiangmin Pan: 2-closures of primitive permutation groups of holomorph type. Open Math. 17(1), 795–801 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank S. V. Skresanov and E. P. Vdovin for fruitful discussions and useful comments to the first draft of the paper, and are grateful to the anonymous referee for suggestions improving the presentation.

The work was partially supported by the RFBR Grant No. 18-01-00752, and by Mathematical Center in Akademgorodok under agreement No. 075-15-2019-1613 with the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia Ponomarenko.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarenko, I., Vasil’ev, A. Two-closures of supersolvable permutation groups in polynomial time. comput. complex. 29, 5 (2020). https://doi.org/10.1007/s00037-020-00195-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00037-020-00195-7

Keywords

Subject classification

Navigation