Tensor surgery and tensor rank

  • Matthias Christandl
  • Jeroen Zuiddam


We introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices and edges. We show that tensor surgery is capable of preserving the low rank structure of an initial tensor decomposition and thus allows to prove nontrivial upper bounds on tensor rank, border rank and asymptotic rank of the final tensors. We illustrate our method with a number of examples. Tensor surgery on the triangle graph, which corresponds to the matrix multiplication tensor, leads to nontrivial rank upper bounds for all odd cycle graphs, which correspond to the tensors of iterated matrix multiplication. In the asymptotic setting we obtain upper bounds in terms of the matrix multiplication exponent ω and the rectangular matrix multiplication parameter α. These bounds are optimal if ω equals two. We also give examples that illustrate that tensor surgery on general graphs might involve the absorption of virtual hyperedges and we provide an example of tensor surgery on a hypergraph. Besides its relevance in algebraic complexity theory, our work has applications in quantum information theory and communication complexity.

Mathematics Subject Classification

05C65 68Q17 68Q12 15A69 81P45 


tensor rank graph tensors algebraic complexity matrix multiplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andris Ambainis, Yuval Filmus & François Le Gall (2015). Fast matrix multiplication: limitations of the Coppersmith-Winograd method. In STOC’15—Proceedings of the 2015 ACM Symposium on Theory of Computing, 585–593. ACM, New York.Google Scholar
  2. Bläser Markus (2003) On the complexity of the multiplication of matrices of small formats. J. Complexity 19(1):43–60 MathSciNetCrossRefzbMATHGoogle Scholar
  3. Harry Buhrman, Matthias Christandl & Jeroen Zuiddam (2017). Nondeterministic Quantum Communication Complexity: the Cyclic Equality Game and Iterated Matrix Multiplication. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), 24:1–24:18. ISBN 978-3-95977-029-3. ISSN 1868-8969. URL
  4. Peter Bürgisser, Michael Clausen & M. Amin Shokrollahi (1997). Algebraic complexity theory, volume 315 of Grundlehren Math. Wiss. Springer-Verlag, Berlin. ISBN 3-540-60582-7, xxiv+618 .URL
  5. Peter Bürgisser & Christian Ikenmeyer (2011). Geometric complexity theory and tensor rank. In STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing, 509–518. ACM, New York. URL
  6. Chen Lin, Chitambar Eric, Duan Runyao, Ji Zhengfeng, Winter Andreas (2010) Tensor rank and stochastic entanglement catalysis for multipartite pure states. Phys. Rev. Lett. 105(20): 200501 CrossRefGoogle Scholar
  7. Matthias Christandl, Péter Vrana & Jeroen Zuiddam (2016). Asymptotic tensor rank of graph tensors: beyond matrix multiplication. arXiv URL
  8. Henry Cohn & Christopher Umans (2012). Fast matrix multiplication using coherent configurations. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, 1074–1087. SIAM, Philadelphia, PA.Google Scholar
  9. Comon Pierre, Mourrain Bernard (1996) Decomposition of quantics in sums of powers of linear forms. Signal Processing 53(2): 93–107 CrossRefzbMATHGoogle Scholar
  10. Don Coppersmith & Shmuel Winograd (1990). Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280. ISSN 0747-7171. URL
  11. Jan Draisma, Eyal Kushilevitz & Enav Weinreb (2011). Partition arguments in multiparty communication complexity. Theoret. Comput. Sci. 412(24), 2611–2622. ISSN 0304-3975. URL
  12. Hans F. de Groote (1978). On varieties of optimal algorithms for the computation of bilinear mappings. I. The isotropy group of a bilinear mapping. Theoret. Comput. Sci. 7(1), 1–24. ISSN 0304-3975. URL
  13. Johan Håstad (1990). Tensor rank is NP-complete. J. Algorithms 11(4), 644–654. ISSN 0196-6774. URL
  14. John E. Hopcroft & Leslie R. Kerr (1971). On minimizing the number of multiplications necessary for matrix multiplication. SIAM J. Appl. Math. 20, 30–36. ISSN 0036-1399. URL
  15. Joseph M. Landsberg (2006). The border rank of the multiplication of 2 ×  2 matrices is seven. J. Amer. Math. Soc. 19(2), 447–459. ISSN 0894-0347. URL
  16. Joseph M. Landsberg (2012). Tensors: geometry and applications, volume 128 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. ISBN 978-0-8218-6907-9, xx+439 .Google Scholar
  17. Joseph M. Landsberg & Giorgio Ottaviani (2013). Equations for secant varieties of Veronese and other varieties. Ann. Mat. Pura Appl. (4) 192(4), 569–606. ISSN 0373-3114. URL
  18. Joseph M. Landsberg & Giorgio Ottaviani (2015). New lower bounds for the border rank of matrix multiplication. Theory Comput. 11, 285–298. ISSN 1557-2862. URL
  19. François Le Gall (2012). Faster algorithms for rectangular matrix multiplication. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012, 514–523. IEEE Computer Soc., Los Alamitos, CA.Google Scholar
  20. François Le Gall (2014). Powers of tensors and fast matrix multiplication. In ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 296–303. ACM, New York. URL
  21. Lior Pachter & Bernd Sturmfels (editors) (2005). Algebraic Statistics for Computational Biology. Cambridge University Press. ISBN 9780511610684. URL
  22. Marcus Schaefer & Daniel Stefankovic (2016). The Complexity of Tensor Rank. preprint. arXiv URL
  23. Yaroslav Shitov (2016). How hard is the tensor rank? preprint. arXiv URL
  24. A. V. Smirnov (2013). The bilinear complexity and practical algorithms for matrix multiplication. Zh. Vychisl. Mat. Mat. Fiz. 53(12), 1970–1984. ISSN 0044-4669. URL
  25. Strassen Volker (1969) Gaussian elimination is not optimal. Numer. Math. 13(4): 354–356MathSciNetCrossRefzbMATHGoogle Scholar
  26. Volker Strassen (1983). Rank and optimal computation of generic tensors. Linear Algebra Appl. 52/53, 645–685. ISSN 0024-3795. URL
  27. Volker Strassen (1987). Relative bilinear complexity and matrix multiplication. J. Reine Angew. Math. 375/376, 406–443. ISSN 0075-4102. URL
  28. Volker Strassen (1988). The asymptotic spectrum of tensors. J. Reine Angew. Math. 384, 102–152. ISSN 0075-4102. URL
  29. Volker Strassen (1991). Degeneration and complexity of bilinear maps: some asymptotic spectra. J. Reine Angew. Math. 413, 127–180. ISSN 0075-4102. URL
  30. Volker Strassen (2005). Komplexität und Geometrie bilinearer Abbildungen. Jahresber. Deutsch. Math.-Verein. 107(1), 3–31. ISSN 0012-0456.Google Scholar
  31. Péter Vrana & Matthias Christandl (2015). Asymptotic entanglement transformation between W and GHZ states. J. Math. Phys. 56(2), 022 204, 12. ISSN 0022-2488. URL
  32. Péter Vrana & Matthias Christandl (2017). Entanglement Distillation from Greenberger–Horne–Zeilinger Shares. Commun. Math. Phys. 352(2), 621–627. ISSN 1432-0916. URL
  33. Winograd Shmuel(1971). On multiplication of 2 × 2 matrices. Linear Algebra Appl. 4(4), 381–388.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Centrum Wiskunde & InformaticaAmsterdamNetherlands

Personalised recommendations