Skip to main content
Log in

The Complexity of Approximating complex-valued Ising and Tutte partition functions

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We study the complexity of approximately evaluating the Ising and Tutte partition functions with complex parameters. Our results are partly motivated by the study of the quantum complexity classes BQP and IQP. Recent results show how to encode quantum computations as evaluations of classical partition functions. These results rely on interesting and deep results about quantum computation in order to obtain hardness results about the difficulty in (classically) evaluating the partition functions for certain fixed parameters.

The motivation for this paper is to study more comprehensively the complexity of (classically) approximating the Ising and Tutte partition functions with complex parameters. Partition functions are combinatorial in nature, and quantifying their approximation complexity does not require a detailed understanding of quantum computation. Using combinatorial arguments, we give the first full classification of the complexity of multiplicatively approximating the norm and additively approximating the argument of the Ising partition function for complex edge interactions (as well as of approximating the partition function according to a natural complex metric). We also study the norm approximation problem in the presence of external fields, for which we give a complete dichotomy when the parameters are roots of unity. Previous results were known just for a few such points, and we strengthen these results from BQP-hardness to #P-hardness. Moreover, we show that computing the sign of the Tutte polynomial is #P-hard at certain points related to the simulation of BQP. Using our classifications, we then revisit the connections to quantum computation, drawing conclusions that are a little different from (and incomparable to) ones in the quantum literature, but along similar lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaronson Scott (2005) Quantum computing, postselection, and probabilistic polynomial-time. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2063): 3473–3482

    Article  MATH  MathSciNet  Google Scholar 

  • Aaronson Scott, Arkhipov Alex (2013) The Computational Complexity of Linear Optics. Theory of Computing 9: 143–252

    Article  MATH  MathSciNet  Google Scholar 

  • Dorit Aharonov & Itai Arad (2011). The BQP-hardness of approximating the Jones polynomial. New Journal of Physics 13(3), 035 019.

  • Bordewich M., Freedman M., Lovász L., Welsh D. (2005) Approximate Counting and Quantum Computation. Combin. Probab. Comput. 14(5–6): 737–754

    Article  MATH  MathSciNet  Google Scholar 

  • Michael J. Bremner, Richard Jozsa & Dan J. Shepherd (2011). Classical Simulation of Commuting Quantum Computations implies Collapse of the Polynomial Hierarchy. Proc. R. Soc. A 467(2126), 459–472.

  • Y. Bugeaud (2004). Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics. Cambridge University Press. ISBN 9781139455671.

  • Cai Jin-Yi, Lu Pinyan, Xia Mingji (2014) The complexity of complex weighted Boolean #CSP. J. Comput. Syst. Sci. 80(1): 217–236

    Article  MATH  MathSciNet  Google Scholar 

  • G. De las Cuevas, W. Dür, M. Van den Nest & M. A. Martin-Delgado (2011). Quantum algorithms for classical lattice models. New Journal of Physics 13(9), 093 021.

  • Michael H. Freedman, Alexei Kitaev, Michael J. Larsen & Zhenghan Wang (2003). Topological quantum computation. Bull. Amer. Math. Soc. (N.S.) 40(1), 31–38.

  • H. Freedman Michael, Larsen Michael, Wang Zhenghan (2002) A modular functor which is universal for quantum computation. Comm. Math. Phys. 227(3): 605–622

    Article  MATH  MathSciNet  Google Scholar 

  • Keisuke Fujii & Tomoyuki Morimae (2013). Quantum Commuting Circuits and Complexity of Ising Partition Functions. CoRR arXiv:1311.2128.

  • Joseph Geraci & Daniel A Lidar (2010). Classical Ising model test for quantum circuits. New Journal of Physics 12(7), 075 026.

  • Ann Goldberg Leslie, Jerrum Mark (2008) Inapproximability of the Tutte polynomial. Inf. Comput. 206(7): 908–929

    Article  MATH  MathSciNet  Google Scholar 

  • Ann Goldberg Leslie, Jerrum Mark (2012) Inapproximability of the Tutte polynomial of a planar graph. Computational Complexity 21(4): 605–642

    Article  MATH  MathSciNet  Google Scholar 

  • Ann Goldberg Leslie, Jerrum Mark (2014) The Complexity of Computing the Sign of the Tutte Polynomial. SIAM J. Comput. 43(6): 1921–1952

    Article  MathSciNet  Google Scholar 

  • Iblisdir S., Cirio M., Kerans O., Brennen G. K. (2014) Low depth quantum circuits for Ising models. Annals of Physics 340(205): 205–251

    Article  MATH  MathSciNet  Google Scholar 

  • Jaeger F., Vertigan D. L., Welsh D. J. A. (1990) On the computational complexity of the Jones and Tutte polynomials. Math. Proc. Cambridge Philos. Soc. 108(1): 35–53

    Article  MATH  MathSciNet  Google Scholar 

  • Jerrum Mark, Sinclair Alistair (1993) Polynomial-Time Approximation Algorithms for the Ising Model. SIAM J. Comput. 22(5): 1087–1116

    Article  MATH  MathSciNet  Google Scholar 

  • Jozsa Richard, Van den Nest Marrten (2014) Classical Simulation Complexity of Extended Clifford Circuits. Quantum Info. Comput. 14(7&8): 633–648

    MathSciNet  Google Scholar 

  • Kuperberg Greg (2015) How Hard Is It to Approximate the Jones Polynomial?. Theory of Computing 11: 183–219

    Article  MATH  MathSciNet  Google Scholar 

  • A. Matsuo, K. Fujii & N. Imoto (2014). A quantum algorithm for additive approximation of Ising partition functions. Phys. Rev. A 90, 022 304.

  • Michael A. Nielsen & Isaac L. Chuang (2004). Quantum Computation and Quantum Information (Cambridge Series on Information and the Natural Sciences). Cambridge University Press, 1st edition. ISBN 0521635039.

  • Scott Provan J., O. Ball Michael (1983) The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected. SIAM J. Comput. 12(4): 777–788

    Article  MATH  MathSciNet  Google Scholar 

  • Dan Shepherd (2010). Binary Matroids and Quantum Probability Distributions. CoRR arXiv:1005.1744.

  • Dan J. Shepherd & Michael J. Bremner (2009). Temporally Unstructured Quantum Computation. Proc. R. Soc. A 465(2105), 1413–1439.

  • Alan D. Sokal (2005). The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., 173–226. Cambridge Univ. Press, Cambridge.

  • B. Thistlethwaite Morwen (1987) A spanning tree expansion of the Jones polynomial. Topology 26(3): 297–309

    Article  MATH  MathSciNet  Google Scholar 

  • G. Valiant Leslie, V. Vazirani Vijay (1986) NP is as Easy as Detecting Unique Solutions. Theor. Comput. Sci. 47(3): 85–93

    Article  MATH  MathSciNet  Google Scholar 

  • Ziv Abraham (1982) Relative distance—an error measure in round-off error analysis. Math. Comp. 39(160): 563–569

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldberg, L.A., Guo, H. The Complexity of Approximating complex-valued Ising and Tutte partition functions. comput. complex. 26, 765–833 (2017). https://doi.org/10.1007/s00037-017-0162-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-017-0162-2

Keywords

Subject classification

Navigation