Advertisement

computational complexity

, Volume 25, Issue 2, pp 349–418 | Cite as

Incompressible Functions, Relative-Error Extractors, and the Power of Nondeterministic Reductions

  • Benny Applebaum
  • Sergei Artemenko
  • Ronen Shaltiel
  • Guang Yang
Article

Abstract

A circuit C compresses a function \({f : \{0,1\}^n\rightarrow \{0,1\}^m}\) if given an input \({x\in \{0,1\}^n}\), the circuit C can shrink x to a shorter ℓ-bit string x′ such that later, a computationally unbounded solver D will be able to compute f(x) based on x′. In this paper we study the existence of functions which are incompressible by circuits of some fixed polynomial size \({s=n^c}\). Motivated by cryptographic applications, we focus on average-case \({(\ell,\epsilon)}\) incompressibility, which guarantees that on a random input \({x\in \{0,1\}^n}\), for every size s circuit \({C:\{0,1\}^n\rightarrow \{0,1\}^{\ell}}\) and any unbounded solver D, the success probability \({\Pr_x[D(C(x))=f(x)]}\) is upper-bounded by \({2^{-m}+\epsilon}\). While this notion of incompressibility appeared in several works (e.g., Dubrov and Ishai, STOC 06), so far no explicit constructions of efficiently computable incompressible functions were known. In this work, we present the following results:
  1. (1)

    Assuming that E is hard for exponential size nondeterministic circuits, we construct a polynomial time computable boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) which is incompressible by size n c circuits with communication \({\ell=(1-o(1)) \cdot n}\) and error \({\epsilon=n^{-c}}\). Our technique generalizes to the case of PRGs against nonboolean circuits, improving and simplifying the previous construction of Shaltiel and Artemenko (STOC 14).

     
  2. (2)

    We show that it is possible to achieve negligible error parameter \({\epsilon=n^{-\omega(1)}}\) for nonboolean functions. Specifically, assuming that E is hard for exponential size \({\Sigma_3}\)-circuits, we construct a nonboolean function \({f:\{0,1\}^n\rightarrow \{0,1\}^m}\) which is incompressible by size n c circuits with \({\ell=\Omega(n)}\) and extremely small \({\epsilon=n^{-c} \cdot 2^{-m}}\). Our construction combines the techniques of Trevisan and Vadhan (FOCS 00) with a new notion of relative error deterministic extractor which may be of independent interest.

     
  3. (3)

    We show that the task of constructing an incompressible boolean function \({f:\{0,1\}^n\rightarrow \{0,1\}}\) with negligible error parameter \({\epsilon}\) cannot be achieved by “existing proof techniques”. Namely, nondeterministic reductions (or even \({\Sigma_i}\) reductions) cannot get \({\epsilon=n^{-\omega(1)}}\) for boolean incompressible functions. Our results also apply to constructions of standard Nisan-Wigderson type PRGs and (standard) boolean functions that are hard on average, explaining, in retrospect, the limitations of existing constructions. Our impossibility result builds on an approach of Shaltiel and Viola (STOC 08).

     

Keywords

compression pseudorandomness extractors nondeterministic reductions 

Subject classification

F.1.2 Modes of Computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai Miklós (1983) \({\Sigma_{1}^{1}}\)-Formulae on finite structures. Annals of Pure and Applied Logic 24(1): 1–48MathSciNetCrossRefzbMATHGoogle Scholar
  2. Benny Applebaum, Yuval Ishai, Eyal Kushilevitz (2010). From Secrecy to Soundness: Efficient Verification via Secure Computation. In ICALP (1), volume 6198 of Lecture Notes in Computer Science, 152–163. Springer.Google Scholar
  3. Applebaum Benny, Ishai Yuval, Kushilevitz Eyal, Waters Brent (2015) Encoding Functions with Constant Online Rate, or How to Compress Garbled Circuit Keys. SIAM J. Comput. 44(2): 433–466MathSciNetCrossRefzbMATHGoogle Scholar
  4. Sergei Artemenko, Russell Impagliazzo, Valentine Kabanets & Ronen Shaltiel (2016). Pseudorandomness when the odds are against you. In Conference on Computational Complexity.Google Scholar
  5. Sergei Artemenko & Ronen Shaltiel (2014a). Lower Bounds on the Query Complexity of Non-uniform and Adaptive Reductions Showing Hardness Amplification. Computational Complexity 23(1), 43–83.Google Scholar
  6. Sergei Artemenko & Ronen Shaltiel (2014b). Pseudorandom generators with optimal seed length for non-boolean poly-size circuits. In STOC, 99–108. ACM.Google Scholar
  7. Babai László, Fortnow Lance, Nisan Noam, Wigderson Avi (1993) BPP Has Subexponential Time Simulations Unless EXPTIME has Publishable Proofs. Computational Complexity 3: 307–318MathSciNetCrossRefzbMATHGoogle Scholar
  8. Babai László, Moran Shlomo (1988) Arthur-Merlin Games: A Randomized Proof System, and a Hierarchy of Complexity Classes. J. Comput. Syst. Sci. 36(2): 254–276MathSciNetCrossRefzbMATHGoogle Scholar
  9. Boaz Barak, Shien Jin Ong, Vadhan Salil P. (2007) Derandomization in Cryptography. SIAM J. Comput. 37(2): 380–400MathSciNetCrossRefzbMATHGoogle Scholar
  10. Bellare Mihir, Goldreich Oded, Petrank Erez (2000) Uniform Generation of NP-Witnesses Using an NP-Oracle. Inf. Comput. 163(2): 510–526MathSciNetCrossRefzbMATHGoogle Scholar
  11. Mihir Bellare & John Rompel (1994). Randomness-Efficient Oblivious Sampling. In FOCS, 276–287. IEEE Computer Society.Google Scholar
  12. Bodlaender Hans L., Downey Rodney G., Fellows Michael R., Danny Hermelin (2009) On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8): 423–434MathSciNetCrossRefzbMATHGoogle Scholar
  13. Arkadev Chattopadhyay & Rahul Santhanam (2012). Lower Bounds on Interactive Compressibility by Constant-Depth Circuits. In FOCS, 619–628. IEEE Computer Society.Google Scholar
  14. Chor Benny, Goldreich Oded (1988) Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity. SIAM J. Comput. 17(2): 230–261MathSciNetCrossRefzbMATHGoogle Scholar
  15. Kai-Min Chung, Yael Tauman Kalai & Salil P. Vadhan (2010). Improved Delegation of Computation Using Fully Homomorphic Encryption. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, 483–501. Springer.Google Scholar
  16. Francesco Davì, Stefan Dziembowski & Daniele Venturi (2010). Leakage-Resilient Storage. In SCN, volume 6280 of Lecture Notes in Computer Science, 121–137. Springer.Google Scholar
  17. Holger Dell, Dieter van Melkebeek (2014) Satisfiability Allows No Nontrivial Sparsification unless the Polynomial-Time Hierarchy Collapses. J. ACM 61(4): 23–12327MathSciNetzbMATHGoogle Scholar
  18. Yevgeniy Dodis, Ariel Elbaz, Roberto Oliveira & Ran Raz (2004). Improved Randomness Extraction from Two Independent Sources. In APPROX-RANDOM, volume 3122 of Lecture Notes in Computer Science, 334–344. Springer.Google Scholar
  19. Andrew Drucker (2013). Nondeterministic Direct Product Reductions and the Success Probability of SAT Solvers. In FOCS, 736–745. IEEE Computer Society.Google Scholar
  20. Bella Dubrov & Yuval Ishai (2006). On the randomness complexity of efficient sampling. In STOC, 711–720. ACM.Google Scholar
  21. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, Vinod Vaikuntanathan (2014). Protecting Circuits from Computationally Bounded and Noisy Leakage. SIAM J. Comput. 43(5): 1564–1614Google Scholar
  22. Feige Uriel, Lund Carsten (1997) On the Hardness of Computing the Permanent of Random Matrices. Computational Complexity 6(2): 101–132MathSciNetCrossRefzbMATHGoogle Scholar
  23. Fortnow Lance, Santhanam Rahul (2011) Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1): 91–106MathSciNetCrossRefzbMATHGoogle Scholar
  24. Furst Merrick L., Saxe James B., Sipser Michael (1984) Parity, Circuits, and the Polynomial-Time Hierarchy. Mathematical Systems Theory 17(1): 13–27MathSciNetCrossRefzbMATHGoogle Scholar
  25. Rosario Gennaro, Craig Gentry & Bryan Parno (2010). Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers. In CRYPTO, volume 6223 of Lecture Notes in Computer Science, 465–482. Springer.Google Scholar
  26. Oded Goldreich & Leonid A. Levin (1989). A Hard-Core Predicate for all One-Way Functions. In STOC, 25–32. ACM.Google Scholar
  27. Goldreich Oded, Micali Silvio, Wigderson Avi (1991) Proofs that Yield Nothing But Their Validity for All Languages in NP Have Zero-Knowledge Proof Systems. J. ACM 38(3): 691–729MathSciNetCrossRefzbMATHGoogle Scholar
  28. Oded Goldreich & Avi Wigderson (2002). Derandomization That Is Rarely Wrong from Short Advice That Is Typically Good. In RANDOM, volume 2483 of Lecture Notes in Computer Science, 209–223. Springer.Google Scholar
  29. Shafi Goldwasser & Michael Sipser (1986). Private Coins versus Public Coins in Interactive Proof Systems. In STOC, 59–68. ACM.Google Scholar
  30. Dan Gutfreund & Guy N. Rothblum (2008). The Complexity of Local List Decoding. In APPROX-RANDOM, volume 5171 of Lecture Notes in Computer Science, 455–468. Springer.Google Scholar
  31. Gutfreund Dan, Shaltiel Ronen, Ta-Shma Amnon (2003) Uniform hardness versus randomness tradeoffs for Arthur-Merlin games. Computational Complexity 12(3-4): 85–130MathSciNetCrossRefzbMATHGoogle Scholar
  32. Gutfreund Dan, Shaltiel Ronen, Ta-Shma Amnon (2007) If NP Languages are Hard on the Worst-Case, Then it is Easy to Find Their Hard Instances. Computational Complexity 16(4): 412–441MathSciNetCrossRefzbMATHGoogle Scholar
  33. Dan Gutfreund & Amnon Ta-Shma (2007). Worst-Case to Average-Case Reductions Revisited. In APPROX-RANDOM, volume 4627 of Lecture Notes in Computer Science, 569–583. Springer.Google Scholar
  34. Harnik Danny, Naor Moni (2010) On the Compressibility of NP Instances and Cryptographic Applications. SIAM J. Comput. 39(5): 1667–1713MathSciNetCrossRefzbMATHGoogle Scholar
  35. Russell Impagliazzo & Avi Wigderson (1997). P = BPP if E Requires Exponential Circuits: Derandomizing the XOR Lemma. In STOC, 220–229. ACM.Google Scholar
  36. Impagliazzo Russell, Wigderson Avi (2001) Randomness vs Time: Derandomization under a Uniform Assumption. J. Comput. Syst. Sci. 63(4): 672–688MathSciNetCrossRefzbMATHGoogle Scholar
  37. Jerrum Mark, Valiant Leslie G., Vazirani Vijay V. (1986) Random Generation of Combinatorial Structures from a Uniform Distribution. Theor. Comput. Sci. 43: 169–188MathSciNetCrossRefzbMATHGoogle Scholar
  38. Yael Tauman Kalai, Ran Raz & Ron D. Rothblum (2014). How to delegate computations: the power of no-signaling proofs. In STOC, 485–494. ACM.Google Scholar
  39. Klivans Adam, van Melkebeek Dieter (2002) Graph Nonisomorphism Has Subexponential Size Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput. 31(5): 1501–1526MathSciNetCrossRefzbMATHGoogle Scholar
  40. Richard J. Lipton (1989). New Directions In Testing. In Distributed Computing And Cryptography, volume 2 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 191–202. DIMACS/AMS.Google Scholar
  41. Chi-Jen Lu, Shi-Chun Tsai & Hsin-Lung Wu (2007). Impossibility Results on Weakly Black-Box Hardness Amplification. In FCT, volume 4639 of Lecture Notes in Computer Science, 400–411. Springer.Google Scholar
  42. Lu Chi-Jen, Tsai Shi-Chun, Wu Hsin-Lung (2008) On the Complexity of Hardness Amplification. IEEE Transactions on Information Theory 54(10): 4575–4586MathSciNetCrossRefzbMATHGoogle Scholar
  43. Peter Bro Miltersen & N. V. Vinodchandran (2005) Derandomizing Arthur-Merlin Games using Hitting Sets. Computational Complexity 14(3): 256–279.Google Scholar
  44. Noam Nisan, Avi Wigderson (1994) Hardness vs Randomness. J. Comput. Syst. Sci. 49(2): 149–167MathSciNetCrossRefzbMATHGoogle Scholar
  45. Igor Carboni Oliveira & Rahul Santhanam (2015). Majority is Incompressible by AC^0[p] Circuits. In Conference on Computational Complexity, volume 33 of LIPIcs, 124–157. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.Google Scholar
  46. Shaltiel Ronen (2002). Recent Developments in Explicit Constructions of Extractors. Bulletin of the EATCS 77: 67–95MathSciNetzbMATHGoogle Scholar
  47. Ronen Shaltiel (2011a). An Introduction to Randomness Extractors. In ICALP (2), volume 6756 of Lecture Notes in Computer Science, 21–41. Springer.Google Scholar
  48. Ronen Shaltiel (2011b). Weak Derandomization of Weak Algorithms: Explicit Versions of Yao’s Lemma. Computational Complexity 20(1), 87–143.Google Scholar
  49. Shaltiel Ronen, Umans Christopher (2005) Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM 52(2): 172–216MathSciNetCrossRefzbMATHGoogle Scholar
  50. Shaltiel Ronen, Umans Christopher (2006) Pseudorandomness for Approximate Counting and Sampling. Computational Complexity 15(4): 298–341MathSciNetCrossRefzbMATHGoogle Scholar
  51. Shaltiel Ronen, Umans Christopher (2009) Low-End Uniform Hardness versus Randomness Tradeoffs for AM. SIAM J. Comput. 39(3): 1006–1037MathSciNetCrossRefzbMATHGoogle Scholar
  52. Shaltiel Ronen, Viola Emanuele (2010) Hardness Amplification Proofs Require Majority. SIAM J. Comput. 39(7): 3122–3154MathSciNetzbMATHGoogle Scholar
  53. Michael Sipser (1983). A Complexity Theoretic Approach to Randomness. In STOC, 330–335. ACM.Google Scholar
  54. Larry J. Stockmeyer (1983). The Complexity of Approximate Counting (Preliminary Version). In STOC, 118–126. ACM.Google Scholar
  55. Sudan Madhu, Trevisan Luca, Vadhan Salil P. (2001) Pseudorandom Generators without the XOR Lemma. J. Comput. Syst. Sci. 62(2): 236–266MathSciNetCrossRefzbMATHGoogle Scholar
  56. Ta-Shma Amnon, Zuckerman David (2004) Extractor codes. IEEE Transactions on Information Theory 50(12): 3015–3025MathSciNetCrossRefzbMATHGoogle Scholar
  57. Luca Trevisan & Salil P. Vadhan (2000). Extracting Randomness from Samplable Distributions. In FOCS, 32–42. IEEE Computer Society.Google Scholar
  58. Trevisan Luca, Vadhan Salil P. (2007) Pseudorandomness and Average-Case Complexity Via Uniform Reductions. Computational Complexity 16(4): 331–364MathSciNetCrossRefzbMATHGoogle Scholar
  59. Vazirani Umesh V. (1987) Strong communication complexity or generating quasirandom sequences form two communicating semi-random sources. Combinatorica 7(4): 375–392MathSciNetCrossRefzbMATHGoogle Scholar
  60. Viola Emanuele (2005) The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4): 147–188MathSciNetCrossRefzbMATHGoogle Scholar
  61. Emanuele Viola (2006). The Complexity of Hardness Amplification and Derandomization. Ph.D. thesis, Harvard University.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Benny Applebaum
    • 1
  • Sergei Artemenko
    • 2
  • Ronen Shaltiel
    • 2
  • Guang Yang
    • 3
  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Haifa UniversityHaifaIsrael
  3. 3.Tsinghua UniversityBeijingChina

Personalised recommendations