computational complexity

, Volume 24, Issue 1, pp 1–30 | Cite as

Monomials in Arithmetic Circuits: Complete Problems in the Counting Hierarchy

Article

Abstract

We consider the complexity of two questions on polynomials given by arithmetic circuits: testing whether a monomial is present and counting the number of monomials. We show that these problems are complete for subclasses of the counting hierarchy which had few or no known natural complete problems before. We also study these questions for circuits computing multilinear polynomials and for univariate multiplicatively disjoint circuits.

Keywords

Arithmetic circuits counting problems polynomials 

Subject classification

68Q15 68Q17 03D15 

References

  1. E. Allender (2004).Arithmetic circuits and counting complexity classes. In Complexity of computations and proofs, volume 13 of Quad. Mat., 33–72. Dept. Math., Seconda Univ. Napoli, Caserta.Google Scholar
  2. Allender E., Beals R., Ogihara M. (1999) The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8(2): 99–126CrossRefMATHMathSciNetGoogle Scholar
  3. Allender E., Bürgisser P., Kjeldgaard-Pedersen J., Miltersen P. B. (2009) On the Complexity of Numerical Analysis. SIAM J. Comput. 38(5): 1987–2006CrossRefMATHGoogle Scholar
  4. E. Allender & K. W. Wagner (1993). Counting hierarchies: polynomial time and constant depth circuits. Current trends in theoretical computer science: essays and Tutorials 40, 469.Google Scholar
  5. S. Arora & B. Barak (2009). Computational complexity: a modern approach. Cambridge University Press.Google Scholar
  6. P. Bürgisser (2000). Completeness and reduction in algebraic complexity theory, volume 7. Springer Verlag.Google Scholar
  7. P. Bürgisser (2009). On defining integers and proving arithmetic circuit lower bounds. Computational Complexity 18(1), 81–103.Google Scholar
  8. Zhixiang Chen & Bin Fu (2010). Approximating Multilinear Monomial Coefficients and Maximum Multilinear Monomials in Multivariate Polynomials. In COCOA (1), 309–323.Google Scholar
  9. Zhixiang Chen & Bin Fu (2011). The Complexity of Testing Monomials in Multivariate Polynomials. In COCOA, 1–15.Google Scholar
  10. Richard A. DeMillo & Richard J. Lipton (1978). A Probabilistic Remark on Algebraic Program Testing. Inf. Process. Lett. 7(4), 193–195. URL http://dblp.uni-trier.de/db/journals/ipl/ipl7.html#DemilloL78.
  11. H. Fournier, G. Malod & S. Mengel (2012). Monomials in arithmetic circuits: Complete problems in the counting hierarchy. In STACS, 362–373.Google Scholar
  12. S. Garg & E. Schost (2009). Interpolation of polynomials given by straight-line programs. Theor. Comput. Sci. 410(27-29), 2659–2662.Google Scholar
  13. J. von zur Gathen (1987). Feasible arithmetic computations: Valiant’s hypothesis. Journal of Symbolic Computation 4(2), 137–172.Google Scholar
  14. F. Green (1993). On the Power of Deterministic Reductions to C = P. Theory of Computing Systems 26(2), 215–233.Google Scholar
  15. J. Hammond (1879). Question 6001. Educ. Times 32, 179.Google Scholar
  16. J. Heintz & C. P. Schnorr (1980). Testing polynomials which are easy to compute (Extended Abstract). In Proceedings of the twelfth annual ACM symposium on Theory of computing, STOC ’80, 262–272. ACM, New York, NY, USA. ISBN 0-89791-017-6. http://doi.acm.org/10.1145/800141.804674.
  17. L. A. Hemaspaandra & M. Ogihara (2002). The complexity theory companion. Springer Verlag.Google Scholar
  18. M. Jansen & R. Santhanam (2011). Permanent Does Not Have Succinct Polynomial Size Arithmetic Circuits of Constant Depth. In ICALP, 724–735.Google Scholar
  19. V. Kabanets & R. Impagliazzo (2004). Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13, 1–46. ISSN 1016-3328. http://dx.doi.org/10.1007/s00037-004-0182-6.
  20. N. Kayal & C. Saha (2011). On the Sum of Square Roots of Polynomials and related problems. In IEEE Conference on Computational Complexity, 292–299.Google Scholar
  21. Adam R. Klivans & Daniel Spielman (2001). Randomness efficient identity testing of multivariate polynomials. In Proceedings of the thirty-third annual ACM symposium on Theory of computing, STOC ’01, 216–223. ACM, New York, NY, USA. ISBN 1-58113-349-9. http://doi.acm.org/10.1145/380752.380801.
  22. P. Koiran & S. Perifel (2007). The complexity of two problems on arithmetic circuits. Theor. Comput. Sci. 389(1-2), 172–181.Google Scholar
  23. P. Koiran & S. Perifel (2011). Interpolation in Valiant’s theory. Computational Complexity 1–20.Google Scholar
  24. I. Koutis (2008). Faster Algebraic Algorithms for Path and Packing Problems. In ICALP, 575–586.Google Scholar
  25. J. Kwisthout, H. L. Bodlaender & L. C. van der Gaag (2011). The Complexity of Finding kth Most Probable Explanations in Probabilistic Networks. In SOFSEM, 356–367.Google Scholar
  26. M. Mahajan, B. V. Raghavendra Rao & K. Sreenivasaiah (2012). Identity Testing, Multilinearity Testing, and Monomials in Read-Once/Twice Formulas and Branching Programs. In MFCS, 655–667.Google Scholar
  27. M. Mahajan & V. Vinay (1997). A combinatorial algorithm for the determinant. In Proceedings of the eighth annual ACM-SIAM symposium on Discrete algorithms, 730–738. Society for Industrial and Applied Mathematics.Google Scholar
  28. G. Malod & N. Portier (2008). Characterizing Valiant’s algebraic complexity classes. J. Complexity 24(1), 16–38.Google Scholar
  29. P. McKenzie & K. W. Wagner (2007). The complexity of membership problems for circuits over sets of natural numbers. Computational Complexity 16(3), 211–244.Google Scholar
  30. J. Mittmann, N. Saxena & P. Scheiblechner (2012). Algebraic Independence in Positive Characteristic – A p-Adic Calculus.ArXiv e-prints.Google Scholar
  31. M. Mundhenk, J. Goldsmith, C. Lusena & E. Allender (2000). Complexity of Finite-Horizon Markov Decision Process Problems. Journal of the ACM (JACM) 47(4), 681–720.Google Scholar
  32. A. Schönhage (1979). On the Power of Random Access Machines. In ICALP, 520–529.Google Scholar
  33. J. T. Schwartz (1980). Fast Probabilistic Algorithms for Verification of Polynomial Identities. J. ACM 27(4), 701–717. ISSN 0004-5411. http://doi.acm.org/10.1145/322217.322225.
  34. Yann Strozecki (2013). On Enumerating Monomials and Other Combinatorial Structures by Polynomial Interpolation. Theory Comput. Syst. 53(4), 532–568.Google Scholar
  35. J. Torán (1988). Succinct Representations of Counting Problems. In AAECC, 415–426.Google Scholar
  36. J. Torán (1991). Complexity Classes Defined by Counting Quantifiers. J. ACM 38(3), 753–774.Google Scholar
  37. L.G. Valiant (1979). Completeness classes in algebra. In Proceedings of the eleventh annual ACM symposium on Theory of computing, 249–261. ACM.Google Scholar
  38. H. Venkateswaran (1991). Properties that Characterize LOGCFL. J. Comput. Syst. Sci. 43(2), 380–404.Google Scholar
  39. H. Venkateswaran & M. Tompa (1989). A New Pebble Game that Characterizes Parallel Complexity Classes. SIAM J. Comput. 18(3), 533–549.Google Scholar
  40. K. W. Wagner (1986). The Complexity of Combinatorial Problems with Succinct Input Representation. Acta Informatica 23(3), 325–356.Google Scholar
  41. R. Williams (2009). Finding paths of length k in O *(2k) time. Information Processing Letters 109(6), 315–318.Google Scholar
  42. Richard Zippel (1979). Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposium on Symbolic and Algebraic Computation, EUROSAM ’79, 216–226. Springer-Verlag, London, UK, UK. ISBN 3-540-09519-5. http://dl.acm.org/citation.cfm?id=646670.698972.

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Hervé Fournier
    • 1
  • Guillaume Malod
    • 2
  • Stefan Mengel
    • 3
  1. 1.Institut de Mathématiques de Jussieu, UMR 7586 CNRSUniv Paris Diderot, Sorbonne Paris CitéParisFrance
  2. 2.Institut de Mathématiques de Jussieu, UMR 7586 CNRSUniversity Paris Diderot, Sorbonne Paris CitéParisFrance
  3. 3.LIX, École PolytechniquePalaiseauFrance

Personalised recommendations