Hadamard tensors and lower bounds on multiparty communication complexity

Abstract

We develop a new method for estimating the discrepancy of tensors associated with multiparty communication problems in the “Number on the Forehead” model of Chandra, Furst, and Lipton. We define an analog of the Hadamard property of matrices for tensors in multiple dimensions and show that any k-party communication problem represented by a Hadamard tensor must have Ω(n/2k) multiparty communication complexity. We also exhibit constructions of Hadamard tensors. This allows us to obtain Ω(n/2k) lower bounds on multiparty communication complexity for a new class of explicitly defined Boolean functions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    N. Alon & J. H. Spencer (2000). The Probabilistic Method (second edition). John Willey & Sons.

  2. 2.

    L. Babai, T. P. Hayes & P. G. Kimmel (1998). The Cost of the Missing Bit: Communication Complexity with Help. Proceedings of the 30th Annual ACM Symposium on Theory of Computing 673–682.

  3. 3.

    Babai L., Nisan N., Szegedy M. (1992) Multiparty Protocols, Pseudorandom Generators for Logspace, and Time-Space Trade-Offs. Journal of Computer and System Sciences 45(2): 204–232

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Barrington D. (1989) Bounded-width polynomial size branching programs recognize exactly those languages in NC 1. Journal of Computer and System Sciences 38(1): 150–164

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    P. Beame & D. Huynh-Ngoc (2009). Multiparty communication complexity and threshold circuit size of AC 0. Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science 53–62.

  6. 6.

    R. Beigel & J. Tarui (1991). On ACC. Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science 783–792.

  7. 7.

    Best M.R. (1977) The Excess of a Hadamard Matrix. Indag. Math. 39(5): 357–361

    MathSciNet  Google Scholar 

  8. 8.

    A. Chandra, M. Furst & R. Lipton (1983). Multiparty protocols. Proceedings of the 15th Annual ACM Symposium on Theory of Computing 94–99.

  9. 9.

    A. Chattopadhyay (2007). Discrepancy and the power of bottom fan-in depth-three circuits. Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science 449–458.

  10. 10.

    A. Chattopadhyay & A. Ada (2008). Multiparty communication complexity of disjointness, Technical report TR-08-002. Electronic Colloquium on Computational Complexity.

  11. 11.

    Chor B., Goldreich O. (1988) Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity. SIAM J. Computing 17: 230–261

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Chung F. (1990) Quasi-Random Classes of Hypergraphs. Random Structures and Algorithms 1(4): 363–382

    MathSciNet  Article  Google Scholar 

  13. 13.

    Chung F., Tetali P. (1993) Communication complexity and quasi randomness. SIAM J. Discrete Math. 6(1): 110–123

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Erdős P., Spencer J.H. (1974) Probabilistic methods in combinatorics. Academic Press, New York

    Google Scholar 

  15. 15.

    Grolmusz V. (1994) The BNS Lower Bound for Multi-Party Protocols is Nearly Optimal. Information and Computation 112: 51–54

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    J. Håstad & M. Goldmann (1991). On the power of small depth threshold circuits. Computational Complexity 113–129.

  17. 17.

    Kharaghani H., Tayfez-Rezaie B. (2005) A Hadamard matrix of order 428. Journal of Combinatorial Designs 13: 435–440

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Klauck H. (2007) Lower bounds for quantum communication complexity. SIAM J. Comput. 37(1): 20–46

    MathSciNet  MATH  Google Scholar 

  19. 19.

    E. Kushilevitz & N. Nisan (1997). Communication complexity. Cambridge University Press.

  20. 20.

    Lee T., Shraibman A. (2009) Disjointness is hard in the multi-party number-on-the-forehead model. Computational Complexity 18(2): 309–336

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    J. H. van Lint & R. M. Wilson (1992). A course in combinatorics. Cambridge University Press.

  22. 22.

    J.H. van Lint (1991). Introduction to Coding Theory. Springer-Verlag.

  23. 23.

    Nisan N., Wigderson A. (1993) Rounds in communication complexity revisited. SIAM J. Comp. 22: 211–219

    MathSciNet  MATH  Google Scholar 

  24. 24.

    P. Pudlák (1994). Unexpected upper bounds on the complexity of some communication games. Proceedings of the 21st International Colloquium on Automata, Languages and Programming 1–11.

  25. 25.

    Pudlák P., Rödl V., Sgall J. (1997) Boolean circuits, tensor ranks and communication complexity. SIAM J. Comp. 26: 605–633

    MATH  Google Scholar 

  26. 26.

    Raz R. (2000) The BNS-Chung criterion for multiparty communication complexity. Computational Complexity 9(2): 113–122

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    W. M. Schmidt (1978). Equations over finite fields: an elementary approach. Lecture Notes in Math., Springer Verlag 536.

  28. 28.

    Shoup V. (1990) New Algorithms for Finding Irreducible Polynomials over Finite Fields. Mathematics of Computation 54: 435–447

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    J. Spencer (1987). Ten lectures on the probabilistic method. Society for Industrial and Applied Mathematics.

  30. 30.

    Weil A. (1948) On some exponential sums. Proceedings of the National Academy of Sciences of the United States of America 34(5): 204–207

    MathSciNet  MATH  Article  Google Scholar 

  31. 31.

    R. Williams (2011). Non-Uniform ACC Circuit Lower Bounds. To appear in Proc. of the 26th IEEE Conference on Computational Complexity.

  32. 32.

    A. Yao (1979). Some complexity questions related to distributed computing. Proceedings of the 11th Annual ACM Symposium on Theory of Computing 209–213.

  33. 33.

    A. Yao (1990). On ACC and threshold circuits. Proceedings of the 31st Annual IEEE Symposium on Foundations of Computer Science 619–627.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anna Gál.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ford, J., Gál, A. Hadamard tensors and lower bounds on multiparty communication complexity. comput. complex. 22, 595–622 (2013). https://doi.org/10.1007/s00037-012-0052-6

Download citation

Keywords

  • Communication complexity
  • lower bounds
  • multiparty communication

Subject classification

  • 68Q17
  • 94C10