Bounded-Depth Circuits Cannot Sample Good Codes

Abstract

We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of 1 − 1/n Ω(1) on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a. AC0) circuit f : {0, 1}poly(n) → {0, 1}n, and (ii) the uniform distribution over any code \({\mathcal{C} \subseteq \{0, 1\}^n}\) that is “good,” that is, has relative distance and rate both Ω(1). This seems to be the first lower bound of this kind.

We give two simple applications of this result: (1) any data structure for storing codewords of a good code \({\mathcal{C} \subseteq \{0, 1\}^n}\) requires redundancy Ω(log n), if each bit of the codeword can be retrieved by a small AC0 circuit; and (2) for some choice of the underlying combinatorial designs, the output distribution of Nisan’s pseudorandom generator against AC0 circuits of depth d cannot be sampled by small AC0 circuits of depth less than d.

This is a preview of subscription content, access via your institution.

References

  1. Andris Ambainis, Leonard J. Schulman, Amnon Ta-Shma, Umesh V. Vazirani, Avi Wigderson (2003) The Quantum Communication Complexity of Sampling. SIAM J. Comput. 32(6): 1570–1585

    MathSciNet  MATH  Article  Google Scholar 

  2. Louay M. J. Bazzi (2009) Polylogarithmic Independence Can Fool DNF Formulas. SIAM J. Comput. 38(6): 2220–2272

    MathSciNet  Article  Google Scholar 

  3. Ravi Boppana (1997) The average sensitivity of bounded-depth circuits. Information Processing Letters 63(5): 257–261 ISSN 00200190

    MathSciNet  Article  Google Scholar 

  4. Mark Braverman (2010). Polylogarithmic independence fools AC0 circuits. J. of the ACM 57(5).

  5. Anna Gál & Peter Bro Miltersen (2007). The cell probe complexity of succinct data structures. Theoret. Comput. Sci.379(3), 405–417. ISSN 0304-3975.

    Google Scholar 

  6. Oded Goldreich, Shafi Goldwasser, Asaf Nussboim (2010) On the Implementation of Huge Random Objects. SIAM J. Comput. 39(7): 2761–2822

    MathSciNet  MATH  Article  Google Scholar 

  7. Venkatesan Guruswami, Christopher Umans & Salil P. Vadhan (2009). Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes. J. of the ACM 56(4).

  8. Harper L.H. (1964) Optimal Assignments of Numbers to Vertices. SIAM Journal on Applied Mathematics 12(1): 131–135

    MathSciNet  MATH  Article  Google Scholar 

  9. Sergiu Hart (1976) A note on the edges of the n-cube. Discrete Mathematics 14(2): 157–163

    MathSciNet  MATH  Article  Google Scholar 

  10. Johan Håstad (1987). Computational limitations of small-depth circuits. MIT Press. ISBN 0262081679.

  11. Marc R. Jerrum, Leslie G. Valiant, Vijay V. Vazirani (1986) Random Generation of Combinatorial Structures from a Uniform Distribution. Theoretical Computer Science 43(2–3): 169–188

    MathSciNet  Google Scholar 

  12. Nathan Linial, Yishay Mansour & Noam Nisan (1993). Constant depth circuits, Fourier transform, and learnability. J. of the ACM 40(3), 607–620. ISSN 0004-5411.

    Google Scholar 

  13. Shachar Lovett & Emanuele Viola (2011). Bounded-depth circuits cannot sample good codes. In IEEE Conf. on Computational Complexity (CCC).

  14. Peter Bro Miltersen (1999). Cell probe complexity - a survey. Invited talk/paper at Advances in Data Structures (Pre-conference workshop of FSTTCS’99).

  15. Noam Nisan (1991). Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70. ISSN 0209-9683.

    Google Scholar 

  16. Ryan O’Donnell (2007). Analysis of Boolean Functions. Lecture notes. Available at http://www.cs.cmu.edu/~odonnell/boolean-analysis.

  17. Alexander A. Razborov (2009). A Simple Proof of Bazzi’s Theorem. ACM Transactions on Computation Theory (TOCT) 1(1).

  18. Emanuele Viola (2004) The Complexity of Constructing Pseudorandom Generators from Hard Functions. Computational Complexity 13(3-4): 147–188

    MathSciNet  MATH  Google Scholar 

  19. Emanuele Viola (2010). The complexity of distributions. SIAM J. on Computing To appear.

  20. Emanuele Viola (2011). Extractors for circuit sources. In IEEE Symp. on Foundations of Computer Science (FOCS).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuele Viola.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lovett, S., Viola, E. Bounded-Depth Circuits Cannot Sample Good Codes. comput. complex. 21, 245–266 (2012). https://doi.org/10.1007/s00037-012-0039-3

Download citation

Keywords

  • Sampling
  • small depth circuits
  • noise sensitivity
  • isoperimetric inequalities

Subject classification

  • 68Q17