Advertisement

computational complexity

, Volume 21, Issue 2, pp 245–266 | Cite as

Bounded-Depth Circuits Cannot Sample Good Codes

  • Shachar Lovett
  • Emanuele ViolaEmail author
Article

Abstract

We study a variant of the classical circuit-lower-bound problems: proving lower bounds for sampling distributions given random bits. We prove a lower bound of 1 − 1/n Ω(1) on the statistical distance between (i) the output distribution of any small constant-depth (a.k.a. AC0) circuit f : {0, 1}poly(n) → {0, 1} n , and (ii) the uniform distribution over any code \({\mathcal{C} \subseteq \{0, 1\}^n}\) that is “good,” that is, has relative distance and rate both Ω(1). This seems to be the first lower bound of this kind.

We give two simple applications of this result: (1) any data structure for storing codewords of a good code \({\mathcal{C} \subseteq \{0, 1\}^n}\) requires redundancy Ω(log n), if each bit of the codeword can be retrieved by a small AC0 circuit; and (2) for some choice of the underlying combinatorial designs, the output distribution of Nisan’s pseudorandom generator against AC0 circuits of depth d cannot be sampled by small AC0 circuits of depth less than d.

Keywords

Sampling small depth circuits noise sensitivity isoperimetric inequalities 

Subject classification

68Q17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andris Ambainis, Leonard J. Schulman, Amnon Ta-Shma, Umesh V. Vazirani, Avi Wigderson (2003) The Quantum Communication Complexity of Sampling. SIAM J. Comput. 32(6): 1570–1585MathSciNetzbMATHCrossRefGoogle Scholar
  2. Louay M. J. Bazzi (2009) Polylogarithmic Independence Can Fool DNF Formulas. SIAM J. Comput. 38(6): 2220–2272MathSciNetCrossRefGoogle Scholar
  3. Ravi Boppana (1997) The average sensitivity of bounded-depth circuits. Information Processing Letters 63(5): 257–261 ISSN 00200190MathSciNetCrossRefGoogle Scholar
  4. Mark Braverman (2010). Polylogarithmic independence fools AC0 circuits. J. of the ACM 57(5).Google Scholar
  5. Anna Gál & Peter Bro Miltersen (2007). The cell probe complexity of succinct data structures. Theoret. Comput. Sci.379(3), 405–417. ISSN 0304-3975.Google Scholar
  6. Oded Goldreich, Shafi Goldwasser, Asaf Nussboim (2010) On the Implementation of Huge Random Objects. SIAM J. Comput. 39(7): 2761–2822MathSciNetzbMATHCrossRefGoogle Scholar
  7. Venkatesan Guruswami, Christopher Umans & Salil P. Vadhan (2009). Unbalanced expanders and randomness extractors from Parvaresh–Vardy codes. J. of the ACM 56(4).Google Scholar
  8. Harper L.H. (1964) Optimal Assignments of Numbers to Vertices. SIAM Journal on Applied Mathematics 12(1): 131–135MathSciNetzbMATHCrossRefGoogle Scholar
  9. Sergiu Hart (1976) A note on the edges of the n-cube. Discrete Mathematics 14(2): 157–163MathSciNetzbMATHCrossRefGoogle Scholar
  10. Johan Håstad (1987). Computational limitations of small-depth circuits. MIT Press. ISBN 0262081679.Google Scholar
  11. Marc R. Jerrum, Leslie G. Valiant, Vijay V. Vazirani (1986) Random Generation of Combinatorial Structures from a Uniform Distribution. Theoretical Computer Science 43(2–3): 169–188MathSciNetGoogle Scholar
  12. Nathan Linial, Yishay Mansour & Noam Nisan (1993). Constant depth circuits, Fourier transform, and learnability. J. of the ACM 40(3), 607–620. ISSN 0004-5411.Google Scholar
  13. Shachar Lovett & Emanuele Viola (2011). Bounded-depth circuits cannot sample good codes. In IEEE Conf. on Computational Complexity (CCC).Google Scholar
  14. Peter Bro Miltersen (1999). Cell probe complexity - a survey. Invited talk/paper at Advances in Data Structures (Pre-conference workshop of FSTTCS’99).Google Scholar
  15. Noam Nisan (1991). Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70. ISSN 0209-9683.Google Scholar
  16. Ryan O’Donnell (2007). Analysis of Boolean Functions. Lecture notes. Available at http://www.cs.cmu.edu/~odonnell/boolean-analysis.
  17. Alexander A. Razborov (2009). A Simple Proof of Bazzi’s Theorem. ACM Transactions on Computation Theory (TOCT) 1(1).Google Scholar
  18. Emanuele Viola (2004) The Complexity of Constructing Pseudorandom Generators from Hard Functions. Computational Complexity 13(3-4): 147–188MathSciNetzbMATHGoogle Scholar
  19. Emanuele Viola (2010). The complexity of distributions. SIAM J. on Computing To appear.Google Scholar
  20. Emanuele Viola (2011). Extractors for circuit sources. In IEEE Symp. on Foundations of Computer Science (FOCS).Google Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.The Institute of Advanced StudyPrincetonUSA
  2. 2.Northeastern UniversityBostonUSA

Personalised recommendations