Hierarchy Theorems for Property Testing

Abstract

Referring to the query complexity of property testing, we prove the existence of a rich hierarchy of corresponding complexity classes. That is, for any relevant function q, we prove the existence of properties that have testing complexity Θ(q). Such results are proven in three standard domains often considered in property testing: generic functions, adjacency predicates describing (dense) graphs, and incidence functions describing bounded-degree graphs. While in two cases, the proofs are quite straightforward, and the techniques employed in the case of the dense graph model seem significantly more involved. Specifically, problems that arise and are treated in the latter case include (1) the preservation of distances between graph under a blow-up operation and (2) the construction of monotone graph properties that have local structure.

This is a preview of subscription content, log in to check access.

References

  1. Alon N.: Testing Subgraphs of Large Graphs. Random Structures and Algorithms. 21, 359–370 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  2. Alon N., Babai L., Itai A.: A fast and Simple Randomized Algorithm for the Maximal Independent Set Problem. J. of Algorithms. 7, 567–583 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  3. Alon N., Fischer E., Krivelevich M., Szegedy M.: Efficient Testing of Large Graphs. Combinatorica. 20, 451–476 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  4. N. Alon, E. Fischer, I. Newman & A. Shapira. A Combinatorial Characterization of the Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260, 2006.

  5. Alon N., Goldreich O., Hastad J., Peralta R.: Simple constructions of almost k-wise independent random variables. Journal of Random structures and Algorithms. 3(3), 354–482 (1992)

    MathSciNet  Google Scholar 

  6. Alon N., Shapira A.: Testing Subgraphs in Directed Graphs. JCSS. 69, 354–482 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Alon N., Shapira A.: A Characterization of Easily Testable Induced Subgraphs. Combinatorics Probability and Computing. 15, 791–805 (2006)

    MathSciNet  Article  Google Scholar 

  8. Alon N., Shapira A.: Every Monotone Graph Property is Testable. SIAM Journal on Computing. 38, 505–522 (2008)

    MathSciNet  Article  Google Scholar 

  9. L. Avigad & O. Goldreich. Testing Graph Blow-Up. Unpublished manuscript, 2010. Available from http://www.wisdom.weizmann.ac.il/~oded/p_lidor.html.

  10. I. Benjamini, O. Schramm & A. Shapira. Every Minor-Closed Property of Sparse Graphs is Testable. In 40th STOC, pages 393–402, 2008.

  11. Blum M., Luby M., Rubinfeld R.: Self-Testing/Correcting with Applications to Numerical Problems. JCSS. 47(3), 549–595 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Ben-Sasson E., Harsha P., Raskhodnikova S.: 3CNF Properties Are Hard to Test. SIAM Journal on Computing. 35(1), 1–21 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  13. A. Bogdanov, K. Obata & L. Trevisan. A Lower Bound for Testing 3-Colorability in Bounded-Degree Graphs. In 43rd FOCS, pages 93–102, 2002.

  14. C. Borgs, J. Chayes, L. Lovász, V.T. Sós, B. Szegedy & K. Vesztergombi. Graph Limits and Parameter Testing. In 38th STOC, pages 261–270, 2006.

  15. Ergun F., Kannan S., Kumar S.R., Rubinfeld R., Viswanathan M.: Spot-Checkers. JCSS. 60(3), 717–751 (2000)

    MathSciNet  Google Scholar 

  16. Fischer E., Matsliah A.: Testing Graph Isomorphism. SIAM J. Comput. 38(1), 207–225 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  17. E. Fischer & E. Rozenberg. Inflatable Graph Properties and Natural Property Tests. In 15th RANDOM, Springer, LNCS 6845, pages 542–554, 2011.

  18. Goldreich O., Goldwasser S., Lehman E., Ron D., Samorodnitsky A.: Testing Monotonicity. Combinatorica. 20(3), 301–337 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  19. O.Goldreich, S. Goldwasser & D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, Vol. 45 (4), pages 653–750, July 1998.

  20. O. Goldreich, M. Krivelevich, I. Newman & E. Rozenberg. Hierarchy Theorems for Property Testing. ECCC, TR08-097, 2008.

  21. Goldreich O., Ron D.: Property Testing in Bounded Degree Graphs. Algorithmica. 32(2), 302–343 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  22. Goldreich O., Ron D.: A Sublinear Bipartitness Tester for Bounded Degree Graphs. Combinatorica. 19(3), 335–373 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  23. O. Goldreich & L. Trevisan. Three theorems regarding testing graph properties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.

  24. Lachish O., Newman I., Shapira A.: Space Complexity vs. Query Complexity. Computational Complexity. 17, 70–93 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  25. Naor J., Naor M.: Small-bias Probability Spaces: Efficient Constructions and Applications. SIAM J. on Computing. 22, 838–856 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  26. Parnas M., Ron D., Rubinfeld R.: Testing Membership in Parenthesis Laguages. Random Structures and Algorithms. 22(1), 98–138 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  27. O. Pikhurko. An Analytic Approach to Stability. Manuscript, 2009. Available from http://arxiv.org/abs/0812.0214.

  28. Ron D.: Property Testing: A Learning Theory Perspective. Foundations and Trends in Machine Learning. 1(3), 307–402 (2008)

    Article  Google Scholar 

  29. Ron D.: Algorithmic and Analysis Techniques in Property Testing. Foundations and Trends in TCS. 5(2), 73–205 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  30. Rubinfeld R., Sudan M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing. 25(2), 252–271 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  31. R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In Current Trends in Theoretical Computer Science: The Challenge of the New Century, Vol 1: Algorithms and Complexity, World scietific, 2004. Preliminary version in Bulletin of the EATCS 77, pages 67–95, 2002.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oded Goldreich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldreich, O., Krivelevich, M., Newman, I. et al. Hierarchy Theorems for Property Testing. comput. complex. 21, 129–192 (2012). https://doi.org/10.1007/s00037-011-0022-4

Download citation

Keywords

  • Property testing
  • hierarchy theorems
  • query complexity
  • graph properties
  • monotone graph properties
  • graph blow-up
  • one-sided versus two-sided error
  • adaptivity versus non-adaptivity

Subject classification

  • 68Q15
  • 68W20