computational complexity

, Volume 21, Issue 1, pp 129–192 | Cite as

Hierarchy Theorems for Property Testing

  • Oded GoldreichEmail author
  • Michael Krivelevich
  • Ilan Newman
  • Eyal Rozenberg


Referring to the query complexity of property testing, we prove the existence of a rich hierarchy of corresponding complexity classes. That is, for any relevant function q, we prove the existence of properties that have testing complexity Θ(q). Such results are proven in three standard domains often considered in property testing: generic functions, adjacency predicates describing (dense) graphs, and incidence functions describing bounded-degree graphs. While in two cases, the proofs are quite straightforward, and the techniques employed in the case of the dense graph model seem significantly more involved. Specifically, problems that arise and are treated in the latter case include (1) the preservation of distances between graph under a blow-up operation and (2) the construction of monotone graph properties that have local structure.


Property testing hierarchy theorems query complexity graph properties monotone graph properties graph blow-up one-sided versus two-sided error adaptivity versus non-adaptivity 

Subject classification

68Q15 68W20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alon N.: Testing Subgraphs of Large Graphs. Random Structures and Algorithms. 21, 359–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alon N., Babai L., Itai A.: A fast and Simple Randomized Algorithm for the Maximal Independent Set Problem. J. of Algorithms. 7, 567–583 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. Alon N., Fischer E., Krivelevich M., Szegedy M.: Efficient Testing of Large Graphs. Combinatorica. 20, 451–476 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  4. N. Alon, E. Fischer, I. Newman & A. Shapira. A Combinatorial Characterization of the Testable Graph Properties: It’s All About Regularity. In 38th STOC, pages 251–260, 2006.Google Scholar
  5. Alon N., Goldreich O., Hastad J., Peralta R.: Simple constructions of almost k-wise independent random variables. Journal of Random structures and Algorithms. 3(3), 354–482 (1992)MathSciNetGoogle Scholar
  6. Alon N., Shapira A.: Testing Subgraphs in Directed Graphs. JCSS. 69, 354–482 (2004)MathSciNetzbMATHGoogle Scholar
  7. Alon N., Shapira A.: A Characterization of Easily Testable Induced Subgraphs. Combinatorics Probability and Computing. 15, 791–805 (2006)MathSciNetCrossRefGoogle Scholar
  8. Alon N., Shapira A.: Every Monotone Graph Property is Testable. SIAM Journal on Computing. 38, 505–522 (2008)MathSciNetCrossRefGoogle Scholar
  9. L. Avigad & O. Goldreich. Testing Graph Blow-Up. Unpublished manuscript, 2010. Available from
  10. I. Benjamini, O. Schramm & A. Shapira. Every Minor-Closed Property of Sparse Graphs is Testable. In 40th STOC, pages 393–402, 2008.Google Scholar
  11. Blum M., Luby M., Rubinfeld R.: Self-Testing/Correcting with Applications to Numerical Problems. JCSS. 47(3), 549–595 (1993)MathSciNetzbMATHGoogle Scholar
  12. Ben-Sasson E., Harsha P., Raskhodnikova S.: 3CNF Properties Are Hard to Test. SIAM Journal on Computing. 35(1), 1–21 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. A. Bogdanov, K. Obata & L. Trevisan. A Lower Bound for Testing 3-Colorability in Bounded-Degree Graphs. In 43rd FOCS, pages 93–102, 2002.Google Scholar
  14. C. Borgs, J. Chayes, L. Lovász, V.T. Sós, B. Szegedy & K. Vesztergombi. Graph Limits and Parameter Testing. In 38th STOC, pages 261–270, 2006.Google Scholar
  15. Ergun F., Kannan S., Kumar S.R., Rubinfeld R., Viswanathan M.: Spot-Checkers. JCSS. 60(3), 717–751 (2000)MathSciNetGoogle Scholar
  16. Fischer E., Matsliah A.: Testing Graph Isomorphism. SIAM J. Comput. 38(1), 207–225 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  17. E. Fischer & E. Rozenberg. Inflatable Graph Properties and Natural Property Tests. In 15th RANDOM, Springer, LNCS 6845, pages 542–554, 2011.Google Scholar
  18. Goldreich O., Goldwasser S., Lehman E., Ron D., Samorodnitsky A.: Testing Monotonicity. Combinatorica. 20(3), 301–337 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. O.Goldreich, S. Goldwasser & D. Ron. Property testing and its connection to learning and approximation. Journal of the ACM, Vol. 45 (4), pages 653–750, July 1998.Google Scholar
  20. O. Goldreich, M. Krivelevich, I. Newman & E. Rozenberg. Hierarchy Theorems for Property Testing. ECCC, TR08-097, 2008.Google Scholar
  21. Goldreich O., Ron D.: Property Testing in Bounded Degree Graphs. Algorithmica. 32(2), 302–343 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. Goldreich O., Ron D.: A Sublinear Bipartitness Tester for Bounded Degree Graphs. Combinatorica. 19(3), 335–373 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  23. O. Goldreich & L. Trevisan. Three theorems regarding testing graph properties. Random Structures and Algorithms, Vol. 23 (1), pages 23–57, August 2003.Google Scholar
  24. Lachish O., Newman I., Shapira A.: Space Complexity vs. Query Complexity. Computational Complexity. 17, 70–93 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Naor J., Naor M.: Small-bias Probability Spaces: Efficient Constructions and Applications. SIAM J. on Computing. 22, 838–856 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Parnas M., Ron D., Rubinfeld R.: Testing Membership in Parenthesis Laguages. Random Structures and Algorithms. 22(1), 98–138 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. O. Pikhurko. An Analytic Approach to Stability. Manuscript, 2009. Available from
  28. Ron D.: Property Testing: A Learning Theory Perspective. Foundations and Trends in Machine Learning. 1(3), 307–402 (2008)CrossRefGoogle Scholar
  29. Ron D.: Algorithmic and Analysis Techniques in Property Testing. Foundations and Trends in TCS. 5(2), 73–205 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Rubinfeld R., Sudan M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing. 25(2), 252–271 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  31. R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In Current Trends in Theoretical Computer Science: The Challenge of the New Century, Vol 1: Algorithms and Complexity, World scietific, 2004. Preliminary version in Bulletin of the EATCS 77, pages 67–95, 2002.Google Scholar

Copyright information

© Springer Basel AG 2011

Authors and Affiliations

  • Oded Goldreich
    • 1
    Email author
  • Michael Krivelevich
    • 2
  • Ilan Newman
    • 3
  • Eyal Rozenberg
    • 4
  1. 1.Department of Computer ScienceWeizmann Institute of ScienceRehovotIsrael
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Computer ScienceHaifa UniversityHaifaIsrael
  4. 4.Department of Computer ScienceTechnionHaifaIsrael

Personalised recommendations