Skip to main content
Log in

Pseudorandom Generators, Typically-Correct Derandomization, and Circuit Lower Bounds

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

The area of derandomization attempts to provide efficient deterministic simulations of randomized algorithms in various algorithmic settings. Goldreich and Wigderson introduced a notion of “typically-correct” deterministic simulations, which are allowed to err on few inputs. In this paper, we further the study of typically-correct derandomization in two ways.

First, we develop a generic approach for constructing typically-correct derandomizations based on seed-extending pseudorandom generators, which are pseudorandom generators that reveal their seed. We use our approach to obtain both conditional and unconditional typically-correct derandomization results in various algorithmic settings. We show that our technique strictly generalizes an earlier approach by Shaltiel based on randomness extractors and simplifies the proofs of some known results. We also demonstrate that our approach is applicable in algorithmic settings where earlier work did not apply. For example, we present a typically-correct polynomial-time simulation for every language in BPP based on a hardness assumption that is (seemingly) weaker than the ones used in earlier work.

Second, we investigate whether typically-correct derandomization of BPP implies circuit lower bounds. Extending the work of Kabanets and Impagliazzo for the zero-error case, we establish a positive answer for error rates in the range considered by Goldreich and Wigderson. In doing so, we provide a simpler proof of the zero-error result. Our proof scales better than the original one and does not rely on the result by Impagliazzo, Kabanets, and Wigderson that NEXP having polynomialsize circuits implies that NEXP coincides with EXP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Scott Aaronson Dieter van Melkebeek (2010). A note on circuit lower bounds from derandomization. Electronic Colloquium on Computational Complexity (ECCC), 17(105).

  • Aaronson Scott, Wigderson Avi (2009) Algebrization: A new barrier in complexity theory. ACM Transactions on Computation Theory, 1(1): 1–54

    Article  Google Scholar 

  • László Babai, Lance Fortnow, Leonid A. Levin & Mario Szegedy (1991). Checking computations in polylogarithmic time. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 21–31.

  • László Babai, Lance Fortnow, Noam Nisan & Avi Wigderson (1993). BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity, 3, 307–318.

    Google Scholar 

  • Babai László, Fortnow Lance, Nisan Noam, Wigderson Avi (1993) BPP has subexponential time simulations unless EXPTIME has publishable proofs. Computational Complexity 3: 307–318

    Article  MathSciNet  MATH  Google Scholar 

  • Aviad Cohen & Avi Wigderson (1989). Dispersers, deterministic amplification, & weak random sources (extended abstract). In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 14–19.

  • Oded Goldreich, Noam Nisan & Avi Wigderson (1995). On Yao’s XOR-lemma. Electronic Colloquium on Computational Complexity (ECCC), 2(50).

  • Oded Goldreich & Avi Wigderson (2000). On pseudorandomness with respect to deterministic observers. In Carleton Scientific, editor, International Colloquium on Automata, Languages and Programming (ICALP), pages 77–84.

  • Oded Goldreich & Avi Wigderson (2002). Derandomization that is rarely wrong from short advice that is typically good. In Proceedings of the International Workshop on Randomization and Computation (RANDOM), pages 209–223.

  • Gutfreund Dan, Shaltiel Ronen, Ta-Shma Amnon (2003) Uniform hardness versus randomness tradeoffs for Arthur-Merlin games. Computational Complexity 12(3-4): 85–130

    Article  MathSciNet  MATH  Google Scholar 

  • Håstad Johan (1987) Computational limitations of small-depth circuits. MIT Press, Cambridge, MA, USA.

    Google Scholar 

  • Impagliazzo Russell, Kabanets Valentine, Wigderson Avi (2002) In search of an easy witness: exponential time vs probabilistic polynomial time. Journal of Computer and System Sciences 65(4): 672–694

    Article  MathSciNet  MATH  Google Scholar 

  • Russell Impagliazzo (1995). Hard-core distributions for somewhat hard problems. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 538–545.

  • Russell Impagliazzo & Avi Wigderson (1997). P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 220–229.

  • Impagliazzo Russell, Wigderson Avi (2001) Randomness vs time: Derandomization under a uniform assumption. Journal of Computer and System Sciences 63(4): 672–688

    Article  MathSciNet  MATH  Google Scholar 

  • Russell Impagliazzo & David Zuckerman (1989). How to recycle random bits. In Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS), pages 248–253.

  • Kabanets Valentine (2001) Easiness assumptions and hardness tests: Trading time for zero error. Journal of Computer and System Sciences 63(2): 236–252

    Article  MathSciNet  MATH  Google Scholar 

  • Kabanets Valentine, Impagliazzo Russell (2004) Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity 13(1/2): 1–46

    Article  MathSciNet  MATH  Google Scholar 

  • Kannan Ravi (1982) Circuit-size lower bounds and nonreducibility to sparse sets. Information and Control 55(1): 40–56

    Article  MathSciNet  MATH  Google Scholar 

  • Klivans Adam R., van Melkebeek Dieter (2002) Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing 31(5): 1501–1526

    Article  MathSciNet  MATH  Google Scholar 

  • van Melkebeek Dieter, Santhanam Rahul (2005) Holographic proofs and derandmization. SIAM Journal on Computing 35(1): 59–90

    Article  MathSciNet  MATH  Google Scholar 

  • Peter Bro Miltersen (2001). Derandomizing complexity classes. In Handbook of Randomized Computing, pages 843–941. Kluwer Academic Publishers.

  • Miltersen Peter Bro, Vinodchandran N. V. (2005) Derandomizing Arthur-Merlin games using hitting sets. Computational Complexity 14(3): 256–279

    Article  MathSciNet  MATH  Google Scholar 

  • Newman Ilan (1991) Private vs common random bits in communication complexity. Information Processing Letters 39(2): 67–71

    Article  MathSciNet  MATH  Google Scholar 

  • Nisan Noam (1991) Pseudorandom bits for constant depth circuits. Combinatorica 11(1): 63–70

    Article  MathSciNet  MATH  Google Scholar 

  • Nisan Noam (1993) On read-once vs multiple access to randomness in logspace. Theoretical Computer Science 107(1): 135–144

    Article  MathSciNet  MATH  Google Scholar 

  • Nisan Noam, Wigderson Avi (1994) Hardness vs randomness. Journal of Computer and System Sciences 49(2): 149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Omer Reingold (2008). Undirected connectivity in log-space. Journal of the ACM, 55(4).

  • Ronen Shaltiel (2009). Weak derandomization of weak algorithms: explicit versions of Yao’s lemma. In Proceedings of the IEEE Conference on Computational Complexity.

  • Shaltiel Ronen, Umans Christopher (2005) Simple extractors for all min-entropies and a new pseudorandom generator. Journal of the ACM 52(2): 172–216

    Article  MathSciNet  Google Scholar 

  • Shaltiel Ronen, Umans Christopher (2006) Pseudorandomness for approximate counting and sampling. Computational Complexity 15(4): 298–341

    Article  MathSciNet  MATH  Google Scholar 

  • Ronen Shaltiel & Christopher Umans (2007). Low-end uniform hardness vs. randomness tradeoffs for AM. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages 430–439.

  • Shamir Adi (1992) IP = PSPACE. Journal of the ACM 39(4): 869–877

    Article  MathSciNet  MATH  Google Scholar 

  • Saks Michael E., Zhou Shiyu (1999) BPHSPACE(S) \({\subseteq}\) DSPACE(S3/2). Journal of Computer and System Sciences 58(2): 376–403

    Article  MathSciNet  MATH  Google Scholar 

  • Toda Seinosuke (1991) PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20(5): 865–877

    Article  MathSciNet  MATH  Google Scholar 

  • Trevisan Luca, Vadhan Salil P. (2007) Pseudorandomness and average-case complexity via uniform reductions. Computational Complexity 16(4): 331–364

    Article  MathSciNet  MATH  Google Scholar 

  • Viola Emanuele (2005) The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4): 147–188

    Article  MathSciNet  Google Scholar 

  • Viola Emanuele (2006) Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates. SIAM Journal on Computing 36(5): 1387–1403

    Article  MathSciNet  Google Scholar 

  • Wilson Christopher B. (1985) Relativized circuit complexity. Journal of Computer and System Sciences 31(2): 169–181

    Article  MathSciNet  MATH  Google Scholar 

  • Zanko Viktoria (1991) #P-completeness via many-one reductions. International Journal of Foundations of Computer Science 2(1): 77–82

    Article  MathSciNet  MATH  Google Scholar 

  • Marius Zimand (2006). Exposure-resilient extractors. In Proceedings of the IEEE Conference on Computational Complexity, pages 61–72.

  • Zimand Marius (2008) Exposure-resilient extractors and the derandomization of probabilistic sublinear time. Computational Complexity, 17(2): 220–253

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Kinne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinne, J., van Melkebeek, D. & Shaltiel, R. Pseudorandom Generators, Typically-Correct Derandomization, and Circuit Lower Bounds. comput. complex. 21, 3–61 (2012). https://doi.org/10.1007/s00037-011-0019-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-011-0019-z

Keywords

Subject classification

Navigation