Skip to main content
Log in

Festuca apennina × F. pratensis triploid hybrids exceed their parents in adaptation to broad-environmental conditions

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Occurrence of Festuca apennina De Not. (4 × Fape), F. pratensis Huds. (2 × Fp) and the triploid, sterile hybrid F. apennina × F. pratensis (3 × Fape × Fp) was studied in 12 regions of the Swiss Alps. In total, 1908 plants were sampled in elevational strata scaled by 50 m between 850 and 2000 m a.s.l., and accompanying vegetation was assessed for each sampling point. The hybrid 3 × Fape × Fp was more frequent and more dominant than both parental species around 1400 m, and had a wider elevational distribution than 2 × Fp and 4 × Fape, which were confined to lower and higher elevation, respectively. As evidenced by their preferred accompanying species, 2 × Fp colonizes dryer, nutrient poorer environments than 4 × Fape which clearly prefers wet and nutrient rich environments. On the contrary, 3 × Fape × Fp thrives similarly well in both environments. The ability to reach an important biomass proportion in a sward, and the wide environmental adaptation of 3 × Fape × Fp is favored by its capacity to strongly expand by rhizomes. A single genotype of 3 × Fape × Fp was found to colonize an entire field of 2.3 ha with a maximum distance between clonal plants of 304 m. It is concluded that 3 × Fape × Fp is a potentially valuable pasture plant for use at higher altitudes, but it may reduce biodiversity via suppressing less competitive plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amsberry L, Baker MA, Ewanchuk PJ, Bertness D (2000) Clonal integration and the expansion of Phragmites australis. Ecol Appl 10:1110–1118

    Article  Google Scholar 

  • Barke BH, Karbstein K, Daubert M, Horandl E (2020) The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC Plant Biol 20:523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley KE, Mauricio R (2016) High degree of clonal reproduction and lack of large-scale geographic patterning mark the introduced range of the invasive vine, kudzu (Pueraria montana var. lobata), in North America. Am J Bot 103:1499–1507

    Article  CAS  PubMed  Google Scholar 

  • Boller B, Felder T, Kopecký D (2018) Tetraploid Festuca apennina is prone to produce triploid hybrid progeny when crossed with diploid Festuca pratensis. In: Brazauskas et al. (Eds.) Breeding Grasses and Protein Crops in the Era of Genomics, pp. 33–38

  • Boller B, Kopecký D (2020) Triploid forage grass hybrids Festuca apennina × F. pratensis display extraordinary heterosis for yield characteristics. Euphytica 216(9):1–14

    Article  Google Scholar 

  • Boller B, Harper J, Willner E, Fuchs J, Glombik M, Majka J, Mahelka V, Zhao C, Kopecký D (2020) Spontaneous natural formation of interspecific hybrids within the Festuca-Lolium complex. Biol Plant 64:679–691

    Article  CAS  Google Scholar 

  • Borrill M, Tyler BF, Morgan WG (1976) Studies in Festuca. 7. Chromosome atlas. 2. Appraisal of chromosome race distribution and ecology, including Festuca pratensis var. apennina (DeNot) Hack. - tetraploid. Cytologia 41:219–236

    Article  Google Scholar 

  • Bürkner P (2017) brms: An R Package for Bayesian Multilevel Models Using Stan. J Stat Softw 80(1):1–28. https://doi.org/10.18637/jss.v080.i01

    Article  Google Scholar 

  • Camus A (1947) Sur deux x Festulolium récoltés dans le sud-ouest. Publications De La Société Linnéenne De Lyon 16:50–51

    Google Scholar 

  • Cullen BR, Chapman DF, Quigley PE (2005) Carbon resource sharing and rhizome expansion of Phalaris aquatica plants in grazed pastures. Funct Plant Biol 32(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • De Notaris G (1844) 2116. Festuca apennina. p. 463 in: G. De Notaris,Repertorium florae ligusticae. Taurini [Turin]: ex Regio Typographeo

  • Delarze R, Gonseth Y, Eggenberg S, Vust M (2015) Lebensräume der Schweiz – Ökologie, Gefährdung, Kennarten, 3rd edn. Ott, Bern

    Google Scholar 

  • Dietl W (1995) Wandel der Wiesenvegetation im Schweizer Mittelland. Zeitschrift Für Ökologie Und Naturschutz 4:239–249

    Google Scholar 

  • Dietl W, Jorquera M (2003) Wiesen- und Alpenpflanzen. Österreichischer Agrarverlag, Leopoldsdorf, p 651

    Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L et al (1998) Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Ann Bot 82:17–26

    Article  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2:2233–2244

    Article  CAS  PubMed  Google Scholar 

  • Domes K, Norton RA, Maraun M, Scheu S (2007) Reevolution of sexuality breaks Dollo’s law. Proc Natl Acad Sci USA 17:7139–7144

    Article  Google Scholar 

  • Edgeloe JM, Severn-Ellis AA, Bayer PE, Mehravi S, Breed MF, Krauss SL, Batley J, Kendrick GA, Sinclair EA (2022) Extensive polyploid clonality was a successful strategy for seagrass to expand into a newly submerged environment. Proc R Soc B. https://doi.org/10.1098/rspb.2022.0538

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Weyand A, Rudmann-Maurer K, Stöcklin J (2011) Adaptation of Poa alpina to altitude and land use in the Swiss Alps. Alp Botany 121:91

    Article  Google Scholar 

  • Franklin S, Alpert P, Salguero-Gómez R, Janovský Z, Herben T, Klimešová J, Douhovnikoff V (2021) Next-gen plant clonal ecology. Perspectives in plant ecology, evolution and systematics 49, Article 125601

  • Frey E (1955) Neue Standardmischungen für den Futterbau. Mitteilungen Für Die Schweizerische Landwirtschaft 3(9):129–142

    Google Scholar 

  • Gustavsson A-M (2001) Bestamnig av rödklöverhalten I vall. Nytt Från Institutionen För Norrlänsk Jordbruksvetenskap 3:1–8

    Google Scholar 

  • Hanna W, Raymer P, Schwartz B (2013). Warm‐season grasses: Biology and breeding. pp. 543–590 In: Stier C, Horgan BP Bonos SA (Eds.): Turfgrass: Biology, use, and management. Agronomy Monograph 56

  • Harberd DJ (1961) Observations on population structure and longevity of Festuca rubra L. New Phytol 60:183–206

    Article  Google Scholar 

  • Hollingsworth ML, Bailey JP (2008) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133(4):463–472

    Article  Google Scholar 

  • Humphreys MW, Harper JA (2008) Festulolium loliaceum, an understudied natural UK grass hybrid species that may provide benefits to UK grasslands withstanding the onsets of climate change. European Crop Wild Relative Newsletter 6:7–9

    Google Scholar 

  • Humphreys MW, Zwierzykowski Z (2020) Festulolium, a century of research and breeding and its increased relevance in meeting the requirements for multifunctional grassland agriculture. Biol Plant 64:578–590

    Article  CAS  Google Scholar 

  • Husband BC (2004) The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol J Lin Soc 82:537–546

    Article  Google Scholar 

  • Jónsdóttir IS, Augner M, Fagerstrom T, Persson H, Stenstrom A (2000) Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography 23:402–412

    Article  Google Scholar 

  • Knobel C (1933) Die Oberallmeindkorporation Schwyz. Vortrag, gehalten an der Jahresversammlung des Schweizerischen Forstvereins in Schwyz vom 20

  • Kopecký D, Harper J, Bartoš J, Gasior D, Vrána J, Hřibová E, Boller B, Ardenghi NMG, Šimoníková D, Doležel J, Humphreys MW (2016) An increasing need for productive and stress resilient Festulolium amphiploids: what can be learnt from the stable genomic composition of Festuca pratensis subsp. apennina (De Not) Hegi? Frontiers Env Sci 4:66

  • Kopecký D, Felder T, Schubiger FX et al (2018) Frequent occurrence of triploid hybrids Festuca pratensis × F. apennina in the Swiss Alps. Alp Bot 128:121–132

    Article  Google Scholar 

  • Landolt E, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer K, Schweingruber FH, Theurillat J-P, Urmi E, Vust M, Wohlgemuth T (2010) Flora indicativa: ökologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen. Haupt, Bern, p 378

    Google Scholar 

  • Meyer W (2008) Article "Landesausbau", in: Historisches Lexikon der Schweiz (HLS), version of 11.11.2008. Online: https://hls-dhs-dss.ch/de/articles/007949/2008-11-11/

  • Mock KE, Rowe CA, Hooten MB, Dewoody J, Hipkins VD (2008) Clonal dynamics in western North American aspen (Populus tremuloides ). Mol Ecol 17:4827–4844

    Article  CAS  PubMed  Google Scholar 

  • Pauler CM, Isselstein J, Suter M, Berard J, Braunbeck T, Schneider MK (2020) Choosy grazers: Influence of plant traits on forage selection by three cattle breeds. Funct Ecol 34:980–992. https://doi.org/10.1111/1365-2435.13542

    Article  Google Scholar 

  • Paun O, Greilhuber J, Temsch EM, Hörandl E (2006) Patterns, sources and ecological implications of clonal diversity in apomictic Ranunculus carpaticola (Ranunculus auricomus complex, Ranunculaceae) Molecular Ecology 15: 897–910

  • Peratoner G, Pötsch EM (2015) Erhebungsmethoden des Pflanzenbestandes im Grünland. pp. 15–22 In: Pötsch EM (Ed) Bericht über das 20. Alpenländische Expertenforum zum Thema Bedeutung und Funktionen des Pflanzenbestandes im Grünland: 1.-2. Oktober 2015, HBLFA Raumberg-Gumpenstein. HBLFA Raumberg-Gumpenstein, Irdning

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Ann Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Sackville Hamilton NR, Chorlton KH (1995) Collecting vegetative material of forage grasses and legumes. In: Eatwell K, Goodman G, Guarino L, Ramanatha Rao V (eds) (1995) Collecting plant genetic diversity. CABI Publishing, Cambridge, pp 467–484

    Google Scholar 

  • Stace CA (1975) Hybridization and the Flora of the British Isles. Academic, London

    Google Scholar 

  • Wang J, Huo BB, Liu WT, Li DL, Liao L (2017) Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2X x 3X progeny. PLOS One 12(018176):7

    Google Scholar 

  • Weibel V (2012) Schwyzer Namenbuch, Band 3 (He-Pi). Triner AG, Schwyz

  • Zhang YY, Parepa M, Fischer M, Bossdorf O (2017). Epigenetics of colonizing species? A study of Japanese knotweed in Central Europe. pp. 328–340 In: Barrett SC, Colautti RI, Dlugosch KM, Rieseberg LH (Eds.) Invasion genetics: the Baker and Stebbins legacy. John Wiley & Sons.

Download references

Funding

The survey of occurrence of Festuca ploidy levels was funded as 06NAP-P51 by the programme NAP PGREL (Nationaler Aktionsplan zur Erhaltung und nachhaltigen Nutzung der pflanzengenetischen Ressourcen für Ernährung und Landwirtschaft) of the Swiss Federal Office for Agriculture. This research was partially funded by the Czech Science Foundation (grant awards 20-10019S) and by the European Regional Development Fund OPVVV project “Plants as a tool for sustainable development” number CZ.02.1.01/0.0/0.0/16_019/0000827 supporting Excellent Research at CRH. We thank the Fodder Crop Breeding group of Agroscope for letting us use their facilities.

Author information

Authors and Affiliations

Authors

Contributions

BB designed the investigation and sampled the specimens together with CZ, DK and JM conducted flow cytometry measurements, DK and JB analyzed clonality using Diversity Arrays Technology, MS and CZ performed statistical analyses, BB led the writing, all co-authors revised the manuscript critically and approved the final version of the manuscript.

Corresponding author

Correspondence to David Kopecky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30586 KB)

Video showing grazing avoidance of 3x FapexFp by a cow in the field Kamor-Loch with uniquely 3x plants. The cow picks small herbs and grasses from the bottom of the canopy even between the tall 3x FapexFp plants (MP4 124796 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boller, B., Schneider, M.K., Zhao, C. et al. Festuca apennina × F. pratensis triploid hybrids exceed their parents in adaptation to broad-environmental conditions. Alp Botany 133, 43–55 (2023). https://doi.org/10.1007/s00035-022-00290-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-022-00290-1

Keywords

Navigation