Advertisement

Alpine Botany

, Volume 129, Issue 2, pp 185–189 | Cite as

A king amongst dwarfs: Boletus edulis forms ectomycorrhiza with dwarf willow in the Swiss Alps

  • Artemis D. Treindl
  • Adrian LeuchtmannEmail author
Short Communication

Abstract

The ectomycorrhizal fungus Boletus edulis, commonly known as king bolete, Steinpilz, porcini or cep, is one of the most popular edible mushrooms in Europe, North America and Asia. To produce fruiting bodies, it usually relies on the symbiotic association with deciduous or coniferous trees. Here, we report on an exceptional finding of B. edulis at an altitude of 2440 m a.s.l. in the Swiss Alps and document for the first time its ectomycorrhizal association with Salix herbacea (dwarf willow) based on molecular markers and microscopic observations.

Keywords

Ectomycorrhiza Host shift Boletus edulis Salix herbacea Swiss Alps 

Notes

Acknowledgements

We thank Andrin Gross for providing data from SwissFungi database, Karsten Rohweder and students of the mycological field course for help with specimen collection, and Bea Arnold for laboratory assistance. Sequence data were generated in the Genetic Diversity Centre of ETH Zurich (GDC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, CambridgeGoogle Scholar
  2. Austrian Mycological Society (2015) Database of fungi in Austria. In: Dämon W, Hausknecht A, Krisai-Greilhuber I (eds). http://www.austria.mykodata.net. Accessed 16 May 2019
  3. Boddy L et al (2014) Climate variation effects on fungal fruiting. Fungal Ecol 10:20–33CrossRefGoogle Scholar
  4. Breitenbach J, Kränzlin F (1991) Pilze der Schweiz. Band 3, Röhrlinge und Blätterpilze 1. Teil. Verlag Mykologia, LuzernGoogle Scholar
  5. Castaño C et al (2017) Mushroom emergence detected by combining spore trapping with molecular techniques. Appl Environ Microbiol 83:e00600-17CrossRefGoogle Scholar
  6. Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14CrossRefGoogle Scholar
  7. den Bakker HC, Zuccarello GC, Kuyper TW, Noordeloos ME (2004) Evolution and host specificity in the ectomycorrhizal genus Leccinum. New Phytol 163:201–215CrossRefGoogle Scholar
  8. Fisher MC et al (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194CrossRefGoogle Scholar
  9. Gange AC, Gange EG, Mohammad AB, Boddy L (2011) Host shifts in fungi caused by climate change? Fungal Ecol 4:184–190CrossRefGoogle Scholar
  10. Graf F (1994) Ecology and sociology of macromycetes in snow-beds with Salix herbacea L. in the alpine valley of Radönt (Grisons, Switzerland). Dissertationes Botanicae 235:1–242Google Scholar
  11. Gross A, Blaser S, Senn-Irlet BJ (2019) SwissFungi: National data- and information center for the fungi of Switzerland [database]. Version 2. Birmensdorf, Swiss Federal Institute WSL. Available from: http://www.swissfungi.ch. Accessed 4 June 2019
  12. Halbwachs H (2018) Coole pilze: einblicke in die ökologie alpiner agaricomyceten. Z Mykol 84:275–300Google Scholar
  13. Hall IR (2003) Edible and poisonous mushrooms of the world. Timber Press, PortlandGoogle Scholar
  14. Hall IR, Lyon AJE, Wang Y, Sinclair L (1998) Ectomycorrhizal fungi with edible fruiting bodies-2. Boletus edulis. Econ Bot 52:44–56CrossRefGoogle Scholar
  15. Krpata D, Mühlmann O, Kuhnert R, Ladurner H, Göbl F, Peintner U (2007) High diversity of ectomycorrhizal fungi associated with Arctostaphylos uva-ursi in subalpine and alpine zones: potential inoculum for afforestation. Forest Ecol Manag 250:167–175CrossRefGoogle Scholar
  16. Landolt E (2003) Unsere Alpenflora. Verlag des SAC, SwitzerlandGoogle Scholar
  17. Leonardi M, Paolocci F, Rubini A, Simonini G, Pacioni G (2005) Assessment of inter- and intra-specific variability in the main species of Boletus edulis complex by ITS analysis. FEMS Microbiol Lett 243:411–416CrossRefGoogle Scholar
  18. Leuchtmann A, Clémençon H (2012) The taxonomic position of the genus Heydenia (Pyrenomataceae, Pezizales) based on molecular and morphological data. Mycol Prog 11:699–710CrossRefGoogle Scholar
  19. Mello A, Ghignone S, Vizzini A, Sechi C, Ruiu P, Bonfante P (2006) ITS primers for the identification of marketable boletes. J Biotechnol 121:318–329CrossRefGoogle Scholar
  20. Mühlmann O, Peintner U (2008) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180CrossRefGoogle Scholar
  21. Peay KG, Schubert MG, Nguyen NH, Bruns TD (2012) Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol 21:4122–4136CrossRefGoogle Scholar
  22. Peintner U, Kuhnert R (2010) Pilze und mikrobielle Gemeinschaften im Gletschervorfeld. In: Koch EM, Erschbamer B (eds) Glaziale und präglaziale Lebensräume im Raum Obergurgl. Innsbruck Univ. Press, Innsbruck, pp 209–224Google Scholar
  23. Reinalter R (2007) Zur Flora der Sedimentzonen der Val Tasna und ihrer Umgebung. Studien des Institutes für Tourismus und Landschaft. Academia Engiadina, SamedanGoogle Scholar
  24. Sassi A (2018) Ein ungewöhnlicher Fund in der alpinen Stufe. Schweizerische Zeitschrift für Pilzkunde 96:5Google Scholar
  25. Watling R (1981) Relationships between Macromycetes and the development of higher plant communities. In: Wicklow DT, Carroll GC (eds) The fungal community. Its organisation and role in the ecosystem. Marcel Dekker, New York, pp 427–458Google Scholar
  26. Watling R (1992) Macrofungi associated with British willows. Proc R Soc Edinb Sect B Biol Sci 98:135–147CrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2019

Authors and Affiliations

  1. 1.Plant Ecological Genetics, Institute of Integrative BiologyETH ZurichZurichSwitzerland

Personalised recommendations