Skip to main content

Advertisement

Log in

Genetic variation and performance of the alpine plant species Dianthus callizonus differ in two elevational zones of the Carpathians

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

In this investigation, we studied whether genetic variation and performance of the alpine plant species Dianthus callizonus differ between two different elevational zones of the southern Carpathians in Romania. We analysed 17 populations of the species from two study regions at 1700 and 2100 m above sea level in the Piatra Craiului Mountains applying AFLP analyses and morphological measurements. Following our results, population size differed between the two study regions and genetic variation within populations depended on population size. Population size and genetic variation within populations were higher in the study region located at 1700 m. By contrast, genetic variation between populations was nearly twice as large in the study region located at 2100 m. In a Mantel test, genetic and geographic distances between populations were clearly correlated. Moreover, individuals from the study region at 2100 m were significantly smaller, had fewer shoots, fewer flowers per shoot and produced seeds with a lower seed mass than individuals from the study region at 1700 m. The results of our study support the observation that changing environmental conditions along elevational gradients in mountain regions affect population size, genetic variation and performance of alpine plant species from different elevational zones, which should be considered in plant conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ægisdóttir HH, Kuss P, Stöcklin J (2009) Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann Bot 104:1313–1322

    Article  PubMed  PubMed Central  Google Scholar 

  • Arroyo MTK, Armestof JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate Andes of Central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Bingham RA, Ranker TA (2000) Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). Int J Plant Sci 161:403–411

    Article  CAS  PubMed  Google Scholar 

  • Bonin A, Belleman E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Busch V, Reisch C (2015) Population size and land use affect the genetic variation and performance of the endangered plant species Dianthus seguieri ssp. glaber. Conserv Genet. doi:10.1007/s10592-10015-10794-10591

    Google Scholar 

  • Byars SG, Parsons Y, Hoffmann AA (2009) Effect of altitude on the genetic structure of an alpine grass, Poa hiemata. Ann Bot 103:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bylebyl K, Poschlod P, Reisch C (2008) Genetic variation of Eryngium campestre L. (Apiaceae) in Central Europe. Mol Ecol 17:3379–3388

    Article  PubMed  Google Scholar 

  • Chaloupecká E, Lepš J (2004) Equivalence of competitor effects and tradeoff between vegetative multiplication and generative reproduction: case study with Lychnis flos-cuculi and Myosotis nemorosa. Flora 199:157–167

    Article  Google Scholar 

  • Cristea V, Jarda L, Holobiuc I (2013) Ex situ conservation of three endemic and/or endangered Dianthus Species. Notulae Botanicae Horti Agrobotanici 41:73–78

    Google Scholar 

  • de Jong T, Klinkhamer P (1994) Plant Size and Reproductive Success through Female and Male Function. J Ecol 82:399–402

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frei ES, Scheepens JF, Stöcklin J (2012) High genetic differentiation in populations of the rare alpine plant species Campanula thyrsoides on a small mountain. Alpine Botany 122:23–34

    Article  Google Scholar 

  • Gämperle E, Schneller J (2003) Phenotypic and isozyme variation in Cystopteris fragilis (Pteridophyta) along an altitudinal gradient in Switzerland. Flora 197:203–213

    Article  Google Scholar 

  • García-Camacho R, Iriondo JM, Escudero A (2010) Seedling dynamics at elevation limits: complex interactions beyond seed and microsite limitations. Am J Bot 97:1791–1797

    Article  PubMed  Google Scholar 

  • Gugerli F, Eichenberger K, Schneller JJ (1999) Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol Ecol 8:453–461

    Article  CAS  Google Scholar 

  • Hahn T, Kettle CJ, Ghazoul J, Frei ER, Matter P, Pluess AR (2012) Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS One 7:e41608. doi:10.41371/journal.pone.0041608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegi G (1986) llustrierte Flora von Mitteleuropa. Pteridophyta—Spermatophyta vol 4(1). Blackwell, Berlin

  • Hensen I, Kilian C, Wagner V, Durka W, Pusch J, Wesche K (2010) Low genetic variability and strong differentiation among isolated populations of the rare steppe grass Stipa capillata L. in Central Europe. Plant Biol 12:526–536

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, Bazaga P (2008) Adding a third dimension to the edge of a species’ range: altitude and genetic structuring in mountainous landscapes. Heredity 100:275–285

    Article  CAS  PubMed  Google Scholar 

  • Hoiss B, Krauss J, Potts SG, Roberts S, Steffan-Dewenter I (2012) Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proc R Soc B 279:4447–4456

    Article  PubMed  PubMed Central  Google Scholar 

  • Holubiuc I, Paunescu A, Blindu R (2005) Ex situ conservation using in vitro methods in some Caryophyllaceae plant soecies from the red list of vascular plants in Romania. Rom J Biol Plant Biol 2014:3–16

    Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–83144

    Article  PubMed  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trend Ecol Evol 22:569–574

    Article  Google Scholar 

  • Kuss P, Pluess AR, Ægisdóttir HH, Stöcklin J (2008) Spatial isolation and genetic differentiation in naturally fragmented plant populations of the Swiss Alps. J Plant Ecol 1:149–159

    Article  Google Scholar 

  • Lamont BB, Klinkhammer PGL, Witkowski ETF (1993) Population fragmentation may reduce fertility to zero in Banksia goodii - a demonstration of the Allee effect. Oecologia 94:446–450

    Article  Google Scholar 

  • Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460

  • Lande R (1998) Anthropogenic, ecological and genetic factors in extinction and conservation. Res Popul Ecol 40:259–269

    Article  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation. J Ecol 94:942–952

    Article  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    Article  Google Scholar 

  • Malo JE, Baonza J (2002) Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) Link in the Sierra de Guadarrama (Central Spain). Divers Distrib 8:365–371

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Matthies D, Bräuer I, Maiboom W, Tscharntke T (2004) Population size and the risk of extinction: empirical evidence from rare plants. Oikos 105:481–488

    Article  Google Scholar 

  • Medan D, Montaldo NH, Devoto M, Mantese A, Vasellati V, Roitman GG, Bartoloni BH (2002) Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arct, Antarc, Alp Res 34:223–241

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Onete M, Stefanut S, Pop OG, Mountford JO (2006) Geographical and ecological distribution of the narrow endemic and relict Dianthus callizonus in Piatra Craiului Massif. Res Piatra Craiului Natl Park 2:134–143

    Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm. J Ecol 94:1233–1248

    Article  Google Scholar 

  • Oyama K, Ito M, Yahara T, Ono M (1993) Low genetic differentiation among populations of Arabis serrata (Brassicaceae) along an altitudinal gradient. J Plant Res 106:143–148

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analyses in Excel. Population genetic software for teaching and reseach. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Putz CM, Schmid C, Reisch C (2015) Living in isolation—population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink). Ecol Evol 5:3610–3621

  • R-Core-Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/. Accessed 6 July 2016

  • Reisch C (2007) Genetic structure of Saxifraga tridactylites (Saxifragaceae) from natural and man-made habitats. Conserv Genet 8:893–902

    Article  CAS  Google Scholar 

  • Reisch C (2008) Glacial history of Saxifraga paniculata (Saxifragaceae)—molecular biogeography of a disjunct arctic-alpine species in Europe and North America. Biol J Linn Soc 93:385–398

    Article  Google Scholar 

  • Reisch C, Bernhardt-Römermann M (2014) The impact of study design and life history traits on genetic variation of plants determined with AFLPs. Plant Ecol 215:1493–1511

    Article  Google Scholar 

  • Reisch C, Poschlod P, Wingender R (2002) Genetic Variation of Sesleria albicans Kit ex Schultes (Poaceae): lack of Evidence for Glacial Relict Endemism in Central Europe. Plant Biol 4:1–9

    Article  Google Scholar 

  • Reisch C, Anke A, Röhl M (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1994) Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual, 2nd edn. Kluwer Academic Press, Dordrecht, pp 1–8

    Google Scholar 

  • Schmidt K, Jensen K (2000) Genetic structure and AFLP variation of remnant populations in the rare plant Pedicularis palustris (Scrophulariaceae) and its relation to population size and reproductive components. Am J Bot 87(5):678–689

    Article  CAS  PubMed  Google Scholar 

  • Schütz W, Milberg P (1997) Seed dormancy in Carex canescens: regional differences and ecological consequences. Oikos 78:420–428

    Article  Google Scholar 

  • Silvertown J, Charlesworth D (2001) Introduction to plant population biology. Blackwell Science, Oxford

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  CAS  PubMed  Google Scholar 

  • Speta E, Rákosy L (2010) Wildpflanzen Siebenbürgens. Plöchl Druck, Freistadt

    Google Scholar 

  • Unger K (1913) Die Alpenflora der Südkarpaten. Schriften zur Landeskunde Siebenbürgens 25:1–38

    Google Scholar 

  • Vekemans X (2002) AFLP-surv version 1.0 Distributed by the author Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Belgium 16

  • Vera ML (1997) Effects of altitude and seed size on germination and seedling survival of heathland plants in north Spain. Plant Ecol 133:101–106

    Article  Google Scholar 

  • Vergeer P, Rengelink R, Copal A, Ouborg N (2003) The interacting effects of genetic variation, habitat quality and population size on performance of Succisa pratensis. J Ecol 91:18–26

    Article  CAS  Google Scholar 

  • Vogler F, Reisch C (2013) Vital survivors: low genetic variation but high germination in glacial relict populations of the typical rock plant Draba aizoides. Biodivers Conserv 22:1301–1316

    Article  Google Scholar 

  • Vorovencii I (2015) Quantifying landscape pattern and assessing the land cover changes in Piatra Craiului National Park and Bucegi Natural Park, Romania, using satellite imagery and landscape metrics. Environ Monit Assess 187:692

    Article  PubMed  Google Scholar 

  • Wen CS, Hsiao JY (2001) Altitudinal genetic differentiation and diversity of taiwan Lily (Lilium longiflorum var. formosum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162:287–295

    Article  CAS  Google Scholar 

  • Yeh FC, Yang RC, Boyles TBJ, Ye ZH, Mao JX (1997) POPGENE, the user-friendly shareware for population genetic analysis. Mol Biol Biotechnol Cent, Alberta

    Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants Trend. Ecol Evol 11:413–418

    Article  CAS  Google Scholar 

  • Young AG, Hill JH, Murray BG, Peakall R (2002) Breeding system, genetic diversity and clonal structure in the subalpine forb Rutidosis leiolepis F. Muell. (Asteraceae). Biol Conserv 106:71–78

    Article  Google Scholar 

  • Zoller H, Lenzin H, Rusterholz HP, Stöcklin J (2005) Increasing Population Density and Seed Production with Altitude in Eritrichium nanum (Boraginaceae): an Arctic Alpine Obligatory Seeder. Arct, Antarc, Alp Res 37:41–48

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the administration of the National Park Piatra Craiului, especially Radu Vulcu, Adrian Ciurea and Mircea Verghelet, for information about the locations and the permission to collect the plant material (Nr. 801/26.8.2015). We would also like to thank Nicusor, Victor, and Lucica Vulcu for their great support, Petra Schitko for assistance in the laboratory, Sabine Fischer for her help with the maps, Sergey Rosbakh for statistical assistance, Maik Bartelheimer for proof reading and Peter Poschlod for his generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Reisch.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Declaration of authorship

C.R. conceived and designed the study. A.G. and J.S. collected the plant material and performed the analyses. All authors contributed to data analysis and manuscript writing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabel, AR., Sattler, J. & Reisch, C. Genetic variation and performance of the alpine plant species Dianthus callizonus differ in two elevational zones of the Carpathians. Alp Botany 127, 65–74 (2017). https://doi.org/10.1007/s00035-016-0177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-016-0177-3

Keywords