Skip to main content

Advertisement

Log in

Plant invasions into mountains and alpine ecosystems: current status and future challenges

  • Review
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Recent years have seen a surge of interest in understanding patterns and processes of plant invasions into mountains. Here, we synthesise current knowledge about the spread of non-native plants along elevation gradients, emphasising the current status and impacts that these species have in alpine ecosystems. Globally, invasions along elevation gradients are influenced by propagule availability, environmental constraints on population growth, evolutionary change and biotic interactions. The highest elevations are so far relatively free from non-native plants. Nonetheless, in total nearly 200 non-native plant species have been recorded from alpine environments around the world. However, we identified only three species as specifically cold-adapted, with the overwhelming majority having their centres of distribution under warmer environments, and few have substantial impacts on native communities. A combination of low propagule availability and low invasibility likely explain why alpine environments host few non-native plants relative to lowland ecosystems. However, experiences in some areas demonstrate that alpine ecosystems are not inherently resistant to invasions. Furthermore, they will face increasing pressure from the introduction of pre-adapted species, climate change, and the range expansion of native species, which are already causing concern in some areas. Nonetheless, because they are still relatively free from non-native plants, preventative action could be an effective way to limit future impacts of invasions in alpine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661. doi:10.1073/pnas.1013136108

    Article  Google Scholar 

  • Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.1038/nature14952

    Article  CAS  PubMed  Google Scholar 

  • Andersen KM, Naylor BJ, Endress BA, Parks CG (2015) Contrasting distribution patterns of invasive and naturalized non-native species along environmental gradients in a semi-arid montane ecosystem. Appl Veg Sci 18:683–693. doi:10.1111/avsc.12185

    Article  Google Scholar 

  • Ansari S, Daehler CC (2010) Life history variation in a temperate plant invader, Verbascum thapsus along a tropical elevational gradient in Hawaii. Biol Invasions 12:4033–4047. doi:10.1007/s10530-010-9810-z

    Article  Google Scholar 

  • Badano EI, Bustamante RO, Villarroel E, Marquet PA, Cavieres LA (2015) Facilitation by nurse plants regulates community invasibility in harsh environments. J Veg Sci 26:756–767. doi:10.1111/jvs.12274

    Article  Google Scholar 

  • Barros A, Pickering CM (2014) Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the southern hemisphere. Mt Res Dev 34:13–26. doi:10.1659/mrd-journal-d-13-00054.1

    Article  Google Scholar 

  • Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183. doi:10.1016/j.ppees.2005.09.006

    Article  Google Scholar 

  • Brown RW, Amacher MC, Mueggler WF, Kotuby-Amacher J (2003) Reestablishing natural succession on acidic mine spoils at high elevation: Long-term ecological restoration. USDA Forest Service Research Paper RMRS-RP-41

  • Burrows CJ (1986) Botany of arthur’s pass national park South Island, New Zealand I. History of botanical studies and checklist of the vascular flora. N Z J Bot 24:9–68. doi:10.1080/0028825X.1986.10409720

    Article  Google Scholar 

  • Caldwell J, Cullen G, Wright G (2015) Mouse-ear hawkweed management report - Kosciuszko National Park, 2014-15. Office of Environment and Heritage, Sydney

    Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226. doi:10.1016/j.ppees.2005.09.002

    Article  Google Scholar 

  • Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high andes of central Chile. Arct Antarct Alp Res 39:229–236

    Article  Google Scholar 

  • Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156. doi:10.1111/j.1365-2435.2007.01338.x

    Article  Google Scholar 

  • Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ (2012) taxonstand: an r package for species names standardisation in vegetation databases. Methods Ecol Evol 3:1078–1083. doi:10.1111/j.2041-210X.2012.00232.x

    Article  Google Scholar 

  • Compagnoni A, Adler PB (2014) Warming, competition, and Bromus tectorum population growth across an elevation gradient. Ecosphere 5. doi:10.1890/es14-00047.1

    Google Scholar 

  • Daehler CC (2005) Upper-montane plant invasions in the Hawaiian Islands: patterns and opportunities. Perspect Plant Ecol Evol Syst 7:203–216. doi:10.1016/j.ppees.2005.08.002

    Article  Google Scholar 

  • Dainese M, Kuehn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16:815–831. doi:10.1007/s10530-013-0540-x

    Article  Google Scholar 

  • Davis M, Grime P, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi:10.1046/j.1365-2745.2000.00473.x

    Article  Google Scholar 

  • Dickson JH, Rodriguez JC, Maghado A (1987) Invading plants at high altitudes on Tenerife especially in the Teide National Park. Bot J Linn Soc 95:155–179. doi:10.1111/j.1095-8339.1987.tb01995.x

    Article  Google Scholar 

  • Diez JM et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi:10.1890/110137

    Article  Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441. doi:10.1657/1523-0430(2003)035[0434:Posiih]2.0.Co;2

  • Essl F et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207. doi:10.1073/pnas.1011728108

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Murillo MP, Rico A, Kindlmann P (2015) Exotic plants along roads near La Paz, Bolivia. Weed Res 55:565–573. doi:10.1111/wre.12174

    Article  Google Scholar 

  • Fuentes N, Ugarte E, Kühn I, Klotz S (2010) Alien plants in southern South America. A framework for evaluation and management of mutual risk of invasion between Chile and Argentina. Biol Invasions 12:3227–3236. doi:10.1007/s10530-010-9716-9

    Article  Google Scholar 

  • Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi:10.1086/283244

    Article  Google Scholar 

  • Haider S, Alexander J, Dietz H, Trepl L, Edwards P, Kueffer C (2010) The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol Invasions 12:4003–4018. doi:10.1007/s10530-010-9815-7

    Article  Google Scholar 

  • Haider S, Kueffer C, Edwards PJ, Alexander JM (2012) Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient. Oecologia 170:89–99. doi:10.1007/s00442-012-2291-2

    Article  PubMed  Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi:10.1111/j.1461-0248.2005.00739.x

    Article  PubMed  Google Scholar 

  • Hedberg O (1970) Evolution of the Afroalpine flora. Biotropica 2:16–23. doi:10.2307/2989783

    Article  Google Scholar 

  • Hemp A (2008) Introduced plants on Kilimanjaro: tourism and its impact. Plant Ecol 197:17–29. doi:10.1007/s11258-007-9356-z

    Article  Google Scholar 

  • Hou Y (2011) Allelopathy effects of poisonous plant in the “black soil land” of Tibetan-plateau and its inhibitory mechanism to Pedicularis kansuensis. Masters Thesis. Lanzhou University, Lanzhou University

  • Irl SDH, Jentsch A, Walther G-R (2013) Papaver croceum Ledeb.: a rare example of an alien species in alpine environments of the Upper Engadine, Switzerland. Alp Bot 123:21–30. doi:10.1007/s00035-013-0111-x

    Article  Google Scholar 

  • Isselin-Nondedeu F, Bédécarrats A (2009) Assessing the dominance of Phleum pratense cv. climax, a species commonly used for ski trail restoration. Appl Veg Sci 12:155–165. doi:10.1111/j.1654-109X.2009.01001.x

    Article  Google Scholar 

  • Jakobs G, Kueffer C, Daehler CC (2010) Introduced weed richness across altitudinal gradients in Hawai’i: humps, humans and water-energy dynamics. Biol Invasions 12:4019–4031. doi:10.1007/s10530-010-9816-6

    Article  Google Scholar 

  • Jauni M, Gripenberg S, Ramula S (2015) Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124:122–129. doi:10.1111/oik.01416

    Article  Google Scholar 

  • Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18:711–718. doi:10.1111/j.1654-1103.2007.tb02585.x

    Article  Google Scholar 

  • Juvik JO, Rodomsky BT, Price JP, Hansen EW, Kueffer C (2011) “The upper limits of vegetation on Mauna Loa, Hawaii”: a 50th-anniversary reassessment. Ecology 92:518–525. doi:10.1890/10-0341.1

    Article  PubMed  Google Scholar 

  • Kalwij JM, Robertson MP, van Rensburg BJ (2015) Annual monitoring reveals rapid upward movement of exotic plants in a montane ecosystem. Biol Invasions 17:3517–3529. doi:10.1007/s10530-015-0975-3

    Article  Google Scholar 

  • Khuroo AA, Weber E, Malik AH, Reshi ZA, Dar GH (2011) Altitudinal distribution patterns of the native and alien woody flora in Kashmir Himalaya, India. Environ Res 111:967–977. doi:10.1016/j.envres.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  • Klein JA, Harte J, Zhao X-Q (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179. doi:10.1111/j.1461-0248.2004.00677.x

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde. Bundesamt für Naturschutz, Bonn

    Google Scholar 

  • Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Körner C, Paulsen J, Spehn E (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121:73–78. doi:10.1007/s00035-011-0094-4

    Article  Google Scholar 

  • Kudo G, Amagai Y, Hoshino B, Kaneko M (2011) Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecol Evol 1:85–96. doi:10.1002/ece3.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kueffer C et al (2013) Plant Invasions into Mountain Protected Areas: Assessment, Prevention and Control at Multiple Spatial Scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant Invasions in Protected Areas: Patterns, Problems and Challenges, vol 7. Springer, Netherlands, pp 89–113. doi:10.1007/978-94-007-7750-7_6

    Chapter  Google Scholar 

  • Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer F, Schweinsgruber FH, Theurillat JP et al (2010) Flora indicativa. Haupt, Bern

    Google Scholar 

  • Leger EA, Espeland EK, Merrill KR, Meyer SE (2009) Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol Ecol 18:4366–4379

    Article  PubMed  Google Scholar 

  • Lembrechts JJ, Milbau A, Nijs I (2014) Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS One 9:e89664. doi:10.1371/journal.pone.0089664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lembrechts JJ et al (2016) Mountain roads shift native and non-native plant species ranges. Ecography. doi:10.1111/ecog.02200

    Google Scholar 

  • Magnússon B, Magnússon S, Sigurdsson B, Santen Ev, Hill G (2004) Plant succession in areas colonized by the introduced Nootka lupin in Iceland. Wild and cultivated lupins from the Tropics to the Poles. Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland. International Lupin Association. pp. 19–24

  • Mallen J (1986) Introduced vascular plants in the high altitude and high latitude areas of Australasia, with particular reference to the Kosciusko Alpine area, New South Wales. In: Barlow B (ed) Flora and fauna of the Alpine Australasia—ages and origins. CSIRO/ASBS, Melbourne, pp 249–258

    Google Scholar 

  • Mallen-Cooper J (1990) Introduced plants in the high altitude environments of Kosciuszko National Park, south-eastern Australia. PhD Thesis. Canberra, Australian National University

  • Marini L, Gaston KJ, Prosser F, Hulme PE (2009) Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Glob Ecol Biogeogr 18:652–661. doi:10.1111/j.1466-8238.2009.00484.x

    Article  Google Scholar 

  • Marini L, Battisti A, Bona E, Federici G, Martini F, Pautasso M, Hulme PE (2012) Alien and native plant life-forms respond differently to human and climate pressures. Glob Ecol Biogeogr 21:534–544. doi:10.1111/j.1466-8238.2011.00702.x

    Article  Google Scholar 

  • Marini L, Bertolli A, Bona E, Federici G, Martini F, Prosser F, Bommarco R (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Glob Ecol Biogeogr 22:450–460. doi:10.1111/geb.12006

    Article  Google Scholar 

  • McDougall KL (2001) Colonization by alpine native plants of a stabilized road verge on the Bogong High Plains, Victoria. Ecol Manag Restor 2:47–52. doi:10.1046/j.1442-8903.2001.00068.x

    Article  Google Scholar 

  • McDougall KL (2013) Alpine road colonisation: an update. Ecol Manag Restor 14:66–68. doi:10.1111/emr.12018

    Article  Google Scholar 

  • McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011a) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111. doi:10.1111/j.1472-4642.2010.00713.x

    Article  Google Scholar 

  • McDougall KL et al (2011b) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387. doi:10.1659/mrd-journal-d-11-00082.1

    Article  Google Scholar 

  • Medvecká J, Jarolímek I, Senko D, Svitok M (2014) Fifty years of plant invasion dynamics in Slovakia along a 2,500 m altitudinal gradient. Biol Invasions 16:1627–1638. doi:10.1007/s10530-013-0596-7

    Article  Google Scholar 

  • Meffin R, Miller AL, Hulme PE, Duncan RP (2010) Experimental introduction of the alien plant Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815

    Article  Google Scholar 

  • Milbau A, Shevtsova A, Osler N, Mooshammer M, Graae BJ (2013) Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytol 197:1002–1011. doi:10.1111/nph.12054

    Article  PubMed  Google Scholar 

  • Moen J, Meurk CD (2001) Competitive abilities of three indigenous New Zealand plant species in relation to the introduced plant Hieracium pilosella. Basic Appl Ecol 2:243–250. doi:10.1078/1439-1791-00052

    Article  Google Scholar 

  • Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723. doi:10.1111/j.1523-1739.2012.01865.x

    Article  PubMed  Google Scholar 

  • Monty A, Mahy G (2009) Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 159:305–315. doi:10.1007/s00442-008-1228-2

    Article  PubMed  Google Scholar 

  • Muñoz AA, Cavieres LA (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J Ecol 96:459–467. doi:10.1111/j.1365-2745.2008.01361.x

    Article  Google Scholar 

  • Münzbergová Z, Hadincová V, Wild J, Kindlmannová J (2013) Variability in the contribution of different life stages to population growth as a key factor in the invasion success of Pinus strobus. PLoS One 8:e56953. doi:10.1371/journal.pone.0056953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paiaro V, Mangeaud A, Pucheta E (2007) Alien seedling recruitment as a response to altitude and soil disturbance in the mountain grasslands of central Argentina. Plant Ecol 193:279–291. doi:10.1007/s11258-007-9265-1

    Article  Google Scholar 

  • Paiaro V, Cabido M, Pucheta E (2011) Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecol 36:176–184. doi:10.1111/j.1442-9993.2010.02134.x

    Article  Google Scholar 

  • Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248. doi:10.1111/j.1523-1739.2004.00300.x

    Article  Google Scholar 

  • Pauchard A et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi:10.1890/080072

    Article  Google Scholar 

  • Pauchard A et al (2016) Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 18:345–353. doi:10.1007/s10530-015-1025-x

    Article  Google Scholar 

  • Petitpierre B, McDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl. doi:10.1890/14-1871.110.1890/14-1871.1

    Google Scholar 

  • Petryna L, Moora M, Nuñes CO, Cantero JJ, Zobel M (2002) Are invaders disturbance-limited? Conservation of mountain grasslands in Central Argentina. Appl Veg Sci 5:195–202. doi:10.1111/j.1654-109X.2002.tb00549.x

    Article  Google Scholar 

  • Pickering CM, Mount A, Wichmann MC, Bullock JM (2011) Estimating human-mediated dispersal of seeds within an Australian protected area. Biol Invasions 13:1869–1880. doi:10.1007/s10530-011-0006-y

    Article  Google Scholar 

  • Poll M, Naylor BJ, Alexander JM, Edwards PJ, Dietz H (2009) Seedling establishment of Asteraceae forbs along altitudinal gradients: a comparison of transplant experiments in the native and introduced ranges. Divers Distrib 15:254–265. doi:10.1111/j.1472-4642.2008.00540.x

    Article  Google Scholar 

  • Pollnac FW, Rew LJ (2014) Life after establishment: factors structuring the success of a mountain invader away from disturbed roadsides. Biol Invasions 16:1689–1698. doi:10.1007/s10530-013-0617-6

    Article  Google Scholar 

  • Pollnac F, Seipel T, Repath C, Rew LJ (2012) Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol Invasions 14:1753–1763. doi:10.1007/s10530-012-0188-y

    Article  Google Scholar 

  • Pollnac FW, Maxwell BD, Taper ML, Rew LJ (2014) The demography of native and non-native plant species in mountain systems: examples in the Greater Yellowstone Ecosystem. Popul Ecol 56:81–95. doi:10.1007/s10144-013-0391-4

    Article  Google Scholar 

  • Prabu NR, Stalin N, Swamy PS (2014) Ecophysiological attributes of Mikania micrantha, an exotic invasive weed, at two different elevations in the tropical forest regions of the Western Ghats, South India. Weed Biol Manag 14:59–67. doi:10.1111/wbm.12033

    Article  CAS  Google Scholar 

  • Pyšek P, Jarošik V, Pergl J, Wild J (2011) Colonization of high altitudes by alien plants over the last two centuries. Proc Natl Acad Sci USA 108:439–440. doi:10.1073/pnas.1017682108

    Article  PubMed  Google Scholar 

  • Quiroz CL, Choler P, Baptist F, González-Teuber M, Molina-Montenegro MA, Cavieres LA (2009) Alpine dandelions originated in the native and introduced range differ in their responses to environmental constraints. Ecol Res 24:175–183. doi:10.1007/s11284-008-0498-9

    Article  Google Scholar 

  • Quiroz CL, Cavieres LA, Pauchard A (2011) Assessing the importance of disturbance, site conditions, and the biotic barrier for dandelion invasion in an Alpine habitat. Biol Invasions 13:2889–2899. doi:10.1007/s10530-011-9971-4

    Article  Google Scholar 

  • Rundel PW, Gibson AC, Sharifi MR (2008) The alpine flora of the White Mountains, California. Madrono 55:202–215. doi:10.3120/0024-9637-55.3.202

    Article  Google Scholar 

  • Rydgren K, Auestad I, Hamre L, Hagen D, Rosef L, Skjerdal G (2015) Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration. Environ Sci Pollut Res. doi:10.1007/s11356-015-4161-z

    Google Scholar 

  • Seipel T et al (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob Ecol Biogeogr 21:236–246. doi:10.1111/j.1466-8238.2011.00664.x

    Article  Google Scholar 

  • Seipel T et al (2015) Performance of the herb Verbascum thapsus along environmental gradients in its native and non-native ranges. J Biogeogr 42:132–143. doi:10.1111/jbi.12403

    Article  Google Scholar 

  • Seipel T, Alexander JM, Edwards PJ, Kueffer C (2016) Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect Plant Ecol Evol Syst 20:46–55. doi:10.1016/j.ppees.2016.04.001

    Article  Google Scholar 

  • Shang ZH, Gibb MJ, Leiber F, Ismail M, Ding LM, Guo XS, Long RJ (2014) The sustainable development of grassland-livestock systems on the Tibetan plateau: problems, strategies and prospects. Rangeland J 36:267–296. doi:10.1071/RJ14008

    Article  Google Scholar 

  • Sorte CJB et al (2012) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270. doi:10.1111/ele.12017

    Article  PubMed  Google Scholar 

  • Steer MA, Norton DA (2013) Factors influencing abundance of invasive hawkweeds, Hieracium species, in tall tussock grasslands in the Canterbury high country. N Z J Bot 51:61–70. doi:10.1080/0028825x.2012.753096

    Article  Google Scholar 

  • Stevens JT, Latimer AM (2015) Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs. Glob Change Biol 21:2379–2393. doi:10.1111/gcb.12824

    Article  Google Scholar 

  • Tassin J, Rivière J-N (2003) Gradient altitudinal de richess en plantes invasives à l’Île de la Réunion (Archipel des Mascareignes, océan Indien). Rev Écol (Terre Vie) 58:257–270

    Google Scholar 

  • Taylor K, Brummer T, Taper ML, Wing A, Rew LJ (2012) Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Divers Distrib 18:942–951. doi:10.1111/j.1472-4642.2012.00926.x

    Article  Google Scholar 

  • Titus JH, Landau F, Wester DB (2003) Ski slope vegetation of Lee Canyon, Nevada, USA. Southwest Nat 48:491–504. doi:10.1894/0038-4909(2003)048<0491:SSVOLC>2.0.CO;2

    Article  Google Scholar 

  • Tomasetto F, Duncan RP, Hulme PE (2013) Environmental gradients shift the direction of the relationship between native and alien plant species richness. Divers Distrib 19:49–59. doi:10.1111/j.1472-4642.2012.00939.x

    Article  Google Scholar 

  • Trtikova M, Edwards PJ, Güsewell S (2010) No adaptation to altitude in the invasive plant Erigeron annuus in the Swiss Alps. Ecography 33:556–564. doi:10.1111/j.1600-0587.2009.05708.x

    Google Scholar 

  • Vacchiano G, Barni E, Lonati M, Masante D, Curtaz A, Tutino S, Siniscalco C (2013) Monitoring and modeling the invasion of the fast spreading alien Senecio inaequidens DC. in an alpine region. Plant Biosyst 147:1139–1147. doi:10.1080/11263504.2013.861535

    Article  Google Scholar 

  • van Kleunen M et al (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103. doi:10.1038/nature14910

    Article  PubMed  CAS  Google Scholar 

  • Wasowicz P (2016) Non-native species in the vascular flora of highlands and mountains of Iceland. Peer J 4:e1559. doi:10.7717/peerj.1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Weaver T, Gustafson D, Lichthardt J (2001) Exotic plants in early and late seral vegetation of fifteen northern Rocky Mountain environments (HTs). West N Am Nat 61:417–427

    Google Scholar 

  • Xie T-p, Zhang G-f, Zhao Z-g, Du G-z, He G-y (2014) Intraspecific competition and light effect on reproduction of Ligularia virgaurea, an invasive native alpine grassland clonal herb. Ecol Evol 4:817–825. doi:10.1002/ece3.975

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu M (2015) Investigation and evaluation of vascular plant resources in the Lhasa River Basin, Tibet. Masters Thesis. Lhasa, Tibet University

  • Zefferman E et al (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 7:056. doi:10.1093/aobpla/plv056

    Article  CAS  Google Scholar 

  • Zhang Y (2011) Prediction of potential suitable distribution of Compositae invasive species from North America with niche modles based on GIS. Masters Thesis. Nanjing, Nanjing Agricultural University

  • Zhang W, Yin D, Huang D, Du N, Liu J, Guo W, Wang R (2015) Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. For Ecol Manag 351:1–8. doi:10.1016/j.foreco.2015.05.004

    Article  Google Scholar 

  • Zhao X, Liu W, Zhou M (2013) Lack of local adaptation of invasive crofton weed (Ageratina adenophora) in different climatic areas of Yunnan Province, China. J Plant Ecol 6:316–322. doi:10.1093/jpe/rts036

    Article  Google Scholar 

  • Zong S, Xu J, Dege E, Wu Z, He H (2016) Effective seed distribution pattern of an upward shift species in alpine tundra of Changbai Mountains. Chin Geogr Sci 26:48–58. doi:10.1007/s11769-015-0775-9

    Article  Google Scholar 

Download references

Acknowledgments

We thank Agustina Barros, Verónica Sandoya, Ileana Herrera and Estefany Goncalves for contributing data. AP and LAC were funded by the Institute of Ecology and Biodiversity with the grants ICM P05-002 and CONICYT PFB-23. LAC also acknowledges funding from FONDECYT 1130592. JJL was funded by the Research Foundation – Flanders (FWO). GL was supported by the Fundamental Research Funds for the Central Universities (GK201503044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake M. Alexander.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexander, J.M., Lembrechts, J.J., Cavieres, L.A. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp Botany 126, 89–103 (2016). https://doi.org/10.1007/s00035-016-0172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-016-0172-8

Keywords

Navigation