Alpine Botany

, Volume 126, Issue 2, pp 89–103 | Cite as

Plant invasions into mountains and alpine ecosystems: current status and future challenges

  • Jake M. AlexanderEmail author
  • Jonas J. Lembrechts
  • Lohengrin A. Cavieres
  • Curtis Daehler
  • Sylvia Haider
  • Christoph Kueffer
  • Gang Liu
  • Keith McDougall
  • Ann Milbau
  • Aníbal Pauchard
  • Lisa J. Rew
  • Tim Seipel


Recent years have seen a surge of interest in understanding patterns and processes of plant invasions into mountains. Here, we synthesise current knowledge about the spread of non-native plants along elevation gradients, emphasising the current status and impacts that these species have in alpine ecosystems. Globally, invasions along elevation gradients are influenced by propagule availability, environmental constraints on population growth, evolutionary change and biotic interactions. The highest elevations are so far relatively free from non-native plants. Nonetheless, in total nearly 200 non-native plant species have been recorded from alpine environments around the world. However, we identified only three species as specifically cold-adapted, with the overwhelming majority having their centres of distribution under warmer environments, and few have substantial impacts on native communities. A combination of low propagule availability and low invasibility likely explain why alpine environments host few non-native plants relative to lowland ecosystems. However, experiences in some areas demonstrate that alpine ecosystems are not inherently resistant to invasions. Furthermore, they will face increasing pressure from the introduction of pre-adapted species, climate change, and the range expansion of native species, which are already causing concern in some areas. Nonetheless, because they are still relatively free from non-native plants, preventative action could be an effective way to limit future impacts of invasions in alpine environments.


Climate change Elevation gradient Mountain Non-native plant Range expansion 



We thank Agustina Barros, Verónica Sandoya, Ileana Herrera and Estefany Goncalves for contributing data. AP and LAC were funded by the Institute of Ecology and Biodiversity with the grants ICM P05-002 and CONICYT PFB-23. LAC also acknowledges funding from FONDECYT 1130592. JJL was funded by the Research Foundation – Flanders (FWO). GL was supported by the Fundamental Research Funds for the Central Universities (GK201503044).

Supplementary material

35_2016_172_MOESM1_ESM.docx (156 kb)
Supplementary material 1 (DOCX 155 kb)


  1. Alexander JM, Kueffer C, Daehler CC, Edwards PJ, Pauchard A, Seipel T, MIREN Consortium (2011) Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc Natl Acad Sci USA 108:656–661. doi: 10.1073/pnas.1013136108 CrossRefGoogle Scholar
  2. Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi: 10.1038/nature14952 PubMedCrossRefGoogle Scholar
  3. Andersen KM, Naylor BJ, Endress BA, Parks CG (2015) Contrasting distribution patterns of invasive and naturalized non-native species along environmental gradients in a semi-arid montane ecosystem. Appl Veg Sci 18:683–693. doi: 10.1111/avsc.12185 CrossRefGoogle Scholar
  4. Ansari S, Daehler CC (2010) Life history variation in a temperate plant invader, Verbascum thapsus along a tropical elevational gradient in Hawaii. Biol Invasions 12:4033–4047. doi: 10.1007/s10530-010-9810-z CrossRefGoogle Scholar
  5. Badano EI, Bustamante RO, Villarroel E, Marquet PA, Cavieres LA (2015) Facilitation by nurse plants regulates community invasibility in harsh environments. J Veg Sci 26:756–767. doi: 10.1111/jvs.12274 CrossRefGoogle Scholar
  6. Barros A, Pickering CM (2014) Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the southern hemisphere. Mt Res Dev 34:13–26. doi: 10.1659/mrd-journal-d-13-00054.1 CrossRefGoogle Scholar
  7. Becker T, Dietz H, Billeter R, Buschmann H, Edwards PJ (2005) Altitudinal distribution of alien plant species in the Swiss Alps. Perspect Plant Ecol Evol Syst 7:173–183. doi: 10.1016/j.ppees.2005.09.006 CrossRefGoogle Scholar
  8. Brown RW, Amacher MC, Mueggler WF, Kotuby-Amacher J (2003) Reestablishing natural succession on acidic mine spoils at high elevation: Long-term ecological restoration. USDA Forest Service Research Paper RMRS-RP-41Google Scholar
  9. Burrows CJ (1986) Botany of arthur’s pass national park South Island, New Zealand I. History of botanical studies and checklist of the vascular flora. N Z J Bot 24:9–68. doi: 10.1080/0028825X.1986.10409720 CrossRefGoogle Scholar
  10. Caldwell J, Cullen G, Wright G (2015) Mouse-ear hawkweed management report - Kosciuszko National Park, 2014-15. Office of Environment and Heritage, SydneyGoogle Scholar
  11. Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evol Syst 7:217–226. doi: 10.1016/j.ppees.2005.09.002 CrossRefGoogle Scholar
  12. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high andes of central Chile. Arct Antarct Alp Res 39:229–236CrossRefGoogle Scholar
  13. Cavieres LA, Quiroz CL, Molina-Montenegro MA (2008) Facilitation of the non-native Taraxacum officinale by native nurse cushion species in the high Andes of central Chile: are there differences between nurses? Funct Ecol 22:148–156. doi: 10.1111/j.1365-2435.2007.01338.x CrossRefGoogle Scholar
  14. Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ (2012) taxonstand: an r package for species names standardisation in vegetation databases. Methods Ecol Evol 3:1078–1083. doi: 10.1111/j.2041-210X.2012.00232.x CrossRefGoogle Scholar
  15. Compagnoni A, Adler PB (2014) Warming, competition, and Bromus tectorum population growth across an elevation gradient. Ecosphere 5. doi: 10.1890/es14-00047.1 Google Scholar
  16. Daehler CC (2005) Upper-montane plant invasions in the Hawaiian Islands: patterns and opportunities. Perspect Plant Ecol Evol Syst 7:203–216. doi: 10.1016/j.ppees.2005.08.002 CrossRefGoogle Scholar
  17. Dainese M, Kuehn I, Bragazza L (2014) Alien plant species distribution in the European Alps: influence of species’ climatic requirements. Biol Invasions 16:815–831. doi: 10.1007/s10530-013-0540-x CrossRefGoogle Scholar
  18. Davis M, Grime P, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534. doi: 10.1046/j.1365-2745.2000.00473.x CrossRefGoogle Scholar
  19. Dickson JH, Rodriguez JC, Maghado A (1987) Invading plants at high altitudes on Tenerife especially in the Teide National Park. Bot J Linn Soc 95:155–179. doi: 10.1111/j.1095-8339.1987.tb01995.x CrossRefGoogle Scholar
  20. Diez JM et al (2012) Will extreme climatic events facilitate biological invasions? Front Ecol Environ 10:249–257. doi: 10.1890/110137 CrossRefGoogle Scholar
  21. Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the northern calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441. doi:10.1657/1523-0430(2003)035[0434:Posiih]2.0.Co;2Google Scholar
  22. Essl F et al (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci 108:203–207. doi: 10.1073/pnas.1011728108 PubMedCrossRefGoogle Scholar
  23. Fernández-Murillo MP, Rico A, Kindlmann P (2015) Exotic plants along roads near La Paz, Bolivia. Weed Res 55:565–573. doi: 10.1111/wre.12174 CrossRefGoogle Scholar
  24. Fuentes N, Ugarte E, Kühn I, Klotz S (2010) Alien plants in southern South America. A framework for evaluation and management of mutual risk of invasion between Chile and Argentina. Biol Invasions 12:3227–3236. doi: 10.1007/s10530-010-9716-9 CrossRefGoogle Scholar
  25. Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194. doi: 10.1086/283244 CrossRefGoogle Scholar
  26. Haider S, Alexander J, Dietz H, Trepl L, Edwards P, Kueffer C (2010) The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol Invasions 12:4003–4018. doi: 10.1007/s10530-010-9815-7 CrossRefGoogle Scholar
  27. Haider S, Kueffer C, Edwards PJ, Alexander JM (2012) Genetically based differentiation in growth of multiple non-native plant species along a steep environmental gradient. Oecologia 170:89–99. doi: 10.1007/s00442-012-2291-2 PubMedCrossRefGoogle Scholar
  28. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x PubMedCrossRefGoogle Scholar
  29. Hedberg O (1970) Evolution of the Afroalpine flora. Biotropica 2:16–23. doi: 10.2307/2989783 CrossRefGoogle Scholar
  30. Hemp A (2008) Introduced plants on Kilimanjaro: tourism and its impact. Plant Ecol 197:17–29. doi: 10.1007/s11258-007-9356-z CrossRefGoogle Scholar
  31. Hou Y (2011) Allelopathy effects of poisonous plant in the “black soil land” of Tibetan-plateau and its inhibitory mechanism to Pedicularis kansuensis. Masters Thesis. Lanzhou University, Lanzhou UniversityGoogle Scholar
  32. Irl SDH, Jentsch A, Walther G-R (2013) Papaver croceum Ledeb.: a rare example of an alien species in alpine environments of the Upper Engadine, Switzerland. Alp Bot 123:21–30. doi: 10.1007/s00035-013-0111-x CrossRefGoogle Scholar
  33. Isselin-Nondedeu F, Bédécarrats A (2009) Assessing the dominance of Phleum pratense cv. climax, a species commonly used for ski trail restoration. Appl Veg Sci 12:155–165. doi: 10.1111/j.1654-109X.2009.01001.x CrossRefGoogle Scholar
  34. Jakobs G, Kueffer C, Daehler CC (2010) Introduced weed richness across altitudinal gradients in Hawai’i: humps, humans and water-energy dynamics. Biol Invasions 12:4019–4031. doi: 10.1007/s10530-010-9816-6 CrossRefGoogle Scholar
  35. Jauni M, Gripenberg S, Ramula S (2015) Non-native plant species benefit from disturbance: a meta-analysis. Oikos 124:122–129. doi: 10.1111/oik.01416 CrossRefGoogle Scholar
  36. Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18:711–718. doi: 10.1111/j.1654-1103.2007.tb02585.x CrossRefGoogle Scholar
  37. Juvik JO, Rodomsky BT, Price JP, Hansen EW, Kueffer C (2011) “The upper limits of vegetation on Mauna Loa, Hawaii”: a 50th-anniversary reassessment. Ecology 92:518–525. doi: 10.1890/10-0341.1 PubMedCrossRefGoogle Scholar
  38. Kalwij JM, Robertson MP, van Rensburg BJ (2015) Annual monitoring reveals rapid upward movement of exotic plants in a montane ecosystem. Biol Invasions 17:3517–3529. doi: 10.1007/s10530-015-0975-3 CrossRefGoogle Scholar
  39. Khuroo AA, Weber E, Malik AH, Reshi ZA, Dar GH (2011) Altitudinal distribution patterns of the native and alien woody flora in Kashmir Himalaya, India. Environ Res 111:967–977. doi: 10.1016/j.envres.2011.05.006 PubMedCrossRefGoogle Scholar
  40. Klein JA, Harte J, Zhao X-Q (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7:1170–1179. doi: 10.1111/j.1461-0248.2004.00677.x CrossRefGoogle Scholar
  41. Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde. Bundesamt für Naturschutz, BonnGoogle Scholar
  42. Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  43. Körner C, Paulsen J, Spehn E (2011) A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp Bot 121:73–78. doi: 10.1007/s00035-011-0094-4 CrossRefGoogle Scholar
  44. Kudo G, Amagai Y, Hoshino B, Kaneko M (2011) Invasion of dwarf bamboo into alpine snow-meadows in northern Japan: pattern of expansion and impact on species diversity. Ecol Evol 1:85–96. doi: 10.1002/ece3.9 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kueffer C et al (2013) Plant Invasions into Mountain Protected Areas: Assessment, Prevention and Control at Multiple Spatial Scales. In: Foxcroft LC, Pyšek P, Richardson DM, Genovesi P (eds) Plant Invasions in Protected Areas: Patterns, Problems and Challenges, vol 7. Springer, Netherlands, pp 89–113. doi: 10.1007/978-94-007-7750-7_6 CrossRefGoogle Scholar
  46. Landolt E, Bäumler B, Erhardt A, Hegg O, Klötzli F, Lämmler W, Nobis M, Rudmann-Maurer F, Schweinsgruber FH, Theurillat JP et al (2010) Flora indicativa. Haupt, BernGoogle Scholar
  47. Leger EA, Espeland EK, Merrill KR, Meyer SE (2009) Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol Ecol 18:4366–4379PubMedCrossRefGoogle Scholar
  48. Lembrechts JJ, Milbau A, Nijs I (2014) Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem. PLoS One 9:e89664. doi: 10.1371/journal.pone.0089664 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lembrechts JJ et al (2016) Mountain roads shift native and non-native plant species ranges. Ecography. doi: 10.1111/ecog.02200 Google Scholar
  50. Magnússon B, Magnússon S, Sigurdsson B, Santen Ev, Hill G (2004) Plant succession in areas colonized by the introduced Nootka lupin in Iceland. Wild and cultivated lupins from the Tropics to the Poles. Proceedings of the 10th International Lupin Conference, Laugarvatn, Iceland. International Lupin Association. pp. 19–24Google Scholar
  51. Mallen J (1986) Introduced vascular plants in the high altitude and high latitude areas of Australasia, with particular reference to the Kosciusko Alpine area, New South Wales. In: Barlow B (ed) Flora and fauna of the Alpine Australasia—ages and origins. CSIRO/ASBS, Melbourne, pp 249–258Google Scholar
  52. Mallen-Cooper J (1990) Introduced plants in the high altitude environments of Kosciuszko National Park, south-eastern Australia. PhD Thesis. Canberra, Australian National UniversityGoogle Scholar
  53. Marini L, Gaston KJ, Prosser F, Hulme PE (2009) Contrasting response of native and alien plant species richness to environmental energy and human impact along alpine elevation gradients. Glob Ecol Biogeogr 18:652–661. doi: 10.1111/j.1466-8238.2009.00484.x CrossRefGoogle Scholar
  54. Marini L, Battisti A, Bona E, Federici G, Martini F, Pautasso M, Hulme PE (2012) Alien and native plant life-forms respond differently to human and climate pressures. Glob Ecol Biogeogr 21:534–544. doi: 10.1111/j.1466-8238.2011.00702.x CrossRefGoogle Scholar
  55. Marini L, Bertolli A, Bona E, Federici G, Martini F, Prosser F, Bommarco R (2013) Beta-diversity patterns elucidate mechanisms of alien plant invasion in mountains. Glob Ecol Biogeogr 22:450–460. doi: 10.1111/geb.12006 CrossRefGoogle Scholar
  56. McDougall KL (2001) Colonization by alpine native plants of a stabilized road verge on the Bogong High Plains, Victoria. Ecol Manag Restor 2:47–52. doi: 10.1046/j.1442-8903.2001.00068.x CrossRefGoogle Scholar
  57. McDougall KL (2013) Alpine road colonisation: an update. Ecol Manag Restor 14:66–68. doi: 10.1111/emr.12018 CrossRefGoogle Scholar
  58. McDougall KL, Alexander JM, Haider S, Pauchard A, Walsh NG, Kueffer C (2011a) Alien flora of mountains: global comparisons for the development of local preventive measures against plant invasions. Divers Distrib 17:103–111. doi: 10.1111/j.1472-4642.2010.00713.x CrossRefGoogle Scholar
  59. McDougall KL et al (2011b) Plant invasions in mountains: global lessons for better management. Mt Res Dev 31:380–387. doi: 10.1659/mrd-journal-d-11-00082.1 CrossRefGoogle Scholar
  60. Medvecká J, Jarolímek I, Senko D, Svitok M (2014) Fifty years of plant invasion dynamics in Slovakia along a 2,500 m altitudinal gradient. Biol Invasions 16:1627–1638. doi: 10.1007/s10530-013-0596-7 CrossRefGoogle Scholar
  61. Meffin R, Miller AL, Hulme PE, Duncan RP (2010) Experimental introduction of the alien plant Hieracium lepidulum reveals no significant impact on montane plant communities in New Zealand. Divers Distrib 16:804–815CrossRefGoogle Scholar
  62. Milbau A, Shevtsova A, Osler N, Mooshammer M, Graae BJ (2013) Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytol 197:1002–1011. doi: 10.1111/nph.12054 PubMedCrossRefGoogle Scholar
  63. Moen J, Meurk CD (2001) Competitive abilities of three indigenous New Zealand plant species in relation to the introduced plant Hieracium pilosella. Basic Appl Ecol 2:243–250. doi: 10.1078/1439-1791-00052 CrossRefGoogle Scholar
  64. Molina-Montenegro MA, Carrasco-Urra F, Rodrigo C, Convey P, Valladares F, Gianoli E (2012) Occurrence of the non-native annual bluegrass on the Antarctic mainland and its negative effects on native plants. Conserv Biol 26:717–723. doi: 10.1111/j.1523-1739.2012.01865.x PubMedCrossRefGoogle Scholar
  65. Monty A, Mahy G (2009) Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia 159:305–315. doi: 10.1007/s00442-008-1228-2 PubMedCrossRefGoogle Scholar
  66. Muñoz AA, Cavieres LA (2008) The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J Ecol 96:459–467. doi: 10.1111/j.1365-2745.2008.01361.x CrossRefGoogle Scholar
  67. Münzbergová Z, Hadincová V, Wild J, Kindlmannová J (2013) Variability in the contribution of different life stages to population growth as a key factor in the invasion success of Pinus strobus. PLoS One 8:e56953. doi: 10.1371/journal.pone.0056953 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Paiaro V, Mangeaud A, Pucheta E (2007) Alien seedling recruitment as a response to altitude and soil disturbance in the mountain grasslands of central Argentina. Plant Ecol 193:279–291. doi: 10.1007/s11258-007-9265-1 CrossRefGoogle Scholar
  69. Paiaro V, Cabido M, Pucheta E (2011) Altitudinal distribution of native and alien plant species in roadside communities from central Argentina. Austral Ecol 36:176–184. doi: 10.1111/j.1442-9993.2010.02134.x CrossRefGoogle Scholar
  70. Pauchard A, Alaback PB (2004) Influence of elevation, land use, and landscape context on patterns of alien plant invasions along roadsides in protected areas of south-central Chile. Conserv Biol 18:238–248. doi: 10.1111/j.1523-1739.2004.00300.x CrossRefGoogle Scholar
  71. Pauchard A et al (2009) Ain’t no mountain high enough: plant invasions reaching new elevations. Front Ecol Environ 7:479–486. doi: 10.1890/080072 CrossRefGoogle Scholar
  72. Pauchard A et al (2016) Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. Biol Invasions 18:345–353. doi: 10.1007/s10530-015-1025-x CrossRefGoogle Scholar
  73. Petitpierre B, McDougall K, Seipel T, Broennimann O, Guisan A, Kueffer C (2015) Will climate change increase the risk of plant invasions into mountains? Ecol Appl. doi: 10.1890/14-1871.110.1890/14-1871.1 Google Scholar
  74. Petryna L, Moora M, Nuñes CO, Cantero JJ, Zobel M (2002) Are invaders disturbance-limited? Conservation of mountain grasslands in Central Argentina. Appl Veg Sci 5:195–202. doi: 10.1111/j.1654-109X.2002.tb00549.x CrossRefGoogle Scholar
  75. Pickering CM, Mount A, Wichmann MC, Bullock JM (2011) Estimating human-mediated dispersal of seeds within an Australian protected area. Biol Invasions 13:1869–1880. doi: 10.1007/s10530-011-0006-y CrossRefGoogle Scholar
  76. Poll M, Naylor BJ, Alexander JM, Edwards PJ, Dietz H (2009) Seedling establishment of Asteraceae forbs along altitudinal gradients: a comparison of transplant experiments in the native and introduced ranges. Divers Distrib 15:254–265. doi: 10.1111/j.1472-4642.2008.00540.x CrossRefGoogle Scholar
  77. Pollnac FW, Rew LJ (2014) Life after establishment: factors structuring the success of a mountain invader away from disturbed roadsides. Biol Invasions 16:1689–1698. doi: 10.1007/s10530-013-0617-6 CrossRefGoogle Scholar
  78. Pollnac F, Seipel T, Repath C, Rew LJ (2012) Plant invasion at landscape and local scales along roadways in the mountainous region of the Greater Yellowstone Ecosystem. Biol Invasions 14:1753–1763. doi: 10.1007/s10530-012-0188-y CrossRefGoogle Scholar
  79. Pollnac FW, Maxwell BD, Taper ML, Rew LJ (2014) The demography of native and non-native plant species in mountain systems: examples in the Greater Yellowstone Ecosystem. Popul Ecol 56:81–95. doi: 10.1007/s10144-013-0391-4 CrossRefGoogle Scholar
  80. Prabu NR, Stalin N, Swamy PS (2014) Ecophysiological attributes of Mikania micrantha, an exotic invasive weed, at two different elevations in the tropical forest regions of the Western Ghats, South India. Weed Biol Manag 14:59–67. doi: 10.1111/wbm.12033 CrossRefGoogle Scholar
  81. Pyšek P, Jarošik V, Pergl J, Wild J (2011) Colonization of high altitudes by alien plants over the last two centuries. Proc Natl Acad Sci USA 108:439–440. doi: 10.1073/pnas.1017682108 PubMedCrossRefGoogle Scholar
  82. Quiroz CL, Choler P, Baptist F, González-Teuber M, Molina-Montenegro MA, Cavieres LA (2009) Alpine dandelions originated in the native and introduced range differ in their responses to environmental constraints. Ecol Res 24:175–183. doi: 10.1007/s11284-008-0498-9 CrossRefGoogle Scholar
  83. Quiroz CL, Cavieres LA, Pauchard A (2011) Assessing the importance of disturbance, site conditions, and the biotic barrier for dandelion invasion in an Alpine habitat. Biol Invasions 13:2889–2899. doi: 10.1007/s10530-011-9971-4 CrossRefGoogle Scholar
  84. Rundel PW, Gibson AC, Sharifi MR (2008) The alpine flora of the White Mountains, California. Madrono 55:202–215. doi: 10.3120/0024-9637-55.3.202 CrossRefGoogle Scholar
  85. Rydgren K, Auestad I, Hamre L, Hagen D, Rosef L, Skjerdal G (2015) Long-term persistence of seeded grass species: an unwanted side effect of ecological restoration. Environ Sci Pollut Res. doi: 10.1007/s11356-015-4161-z Google Scholar
  86. Seipel T et al (2012) Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world. Glob Ecol Biogeogr 21:236–246. doi: 10.1111/j.1466-8238.2011.00664.x CrossRefGoogle Scholar
  87. Seipel T et al (2015) Performance of the herb Verbascum thapsus along environmental gradients in its native and non-native ranges. J Biogeogr 42:132–143. doi: 10.1111/jbi.12403 CrossRefGoogle Scholar
  88. Seipel T, Alexander JM, Edwards PJ, Kueffer C (2016) Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect Plant Ecol Evol Syst 20:46–55. doi: 10.1016/j.ppees.2016.04.001 CrossRefGoogle Scholar
  89. Shang ZH, Gibb MJ, Leiber F, Ismail M, Ding LM, Guo XS, Long RJ (2014) The sustainable development of grassland-livestock systems on the Tibetan plateau: problems, strategies and prospects. Rangeland J 36:267–296. doi: 10.1071/RJ14008 CrossRefGoogle Scholar
  90. Sorte CJB et al (2012) Poised to prosper? A cross-system comparison of climate change effects on native and non-native species performance. Ecol Lett 16:261–270. doi: 10.1111/ele.12017 PubMedCrossRefGoogle Scholar
  91. Steer MA, Norton DA (2013) Factors influencing abundance of invasive hawkweeds, Hieracium species, in tall tussock grasslands in the Canterbury high country. N Z J Bot 51:61–70. doi: 10.1080/0028825x.2012.753096 CrossRefGoogle Scholar
  92. Stevens JT, Latimer AM (2015) Snowpack, fire, and forest disturbance: interactions affect montane invasions by non-native shrubs. Glob Change Biol 21:2379–2393. doi: 10.1111/gcb.12824 CrossRefGoogle Scholar
  93. Tassin J, Rivière J-N (2003) Gradient altitudinal de richess en plantes invasives à l’Île de la Réunion (Archipel des Mascareignes, océan Indien). Rev Écol (Terre Vie) 58:257–270Google Scholar
  94. Taylor K, Brummer T, Taper ML, Wing A, Rew LJ (2012) Human-mediated long-distance dispersal: an empirical evaluation of seed dispersal by vehicles. Divers Distrib 18:942–951. doi: 10.1111/j.1472-4642.2012.00926.x CrossRefGoogle Scholar
  95. Titus JH, Landau F, Wester DB (2003) Ski slope vegetation of Lee Canyon, Nevada, USA. Southwest Nat 48:491–504. doi: 10.1894/0038-4909(2003)048<0491:SSVOLC>2.0.CO;2 CrossRefGoogle Scholar
  96. Tomasetto F, Duncan RP, Hulme PE (2013) Environmental gradients shift the direction of the relationship between native and alien plant species richness. Divers Distrib 19:49–59. doi: 10.1111/j.1472-4642.2012.00939.x CrossRefGoogle Scholar
  97. Trtikova M, Edwards PJ, Güsewell S (2010) No adaptation to altitude in the invasive plant Erigeron annuus in the Swiss Alps. Ecography 33:556–564. doi: 10.1111/j.1600-0587.2009.05708.x Google Scholar
  98. Vacchiano G, Barni E, Lonati M, Masante D, Curtaz A, Tutino S, Siniscalco C (2013) Monitoring and modeling the invasion of the fast spreading alien Senecio inaequidens DC. in an alpine region. Plant Biosyst 147:1139–1147. doi: 10.1080/11263504.2013.861535 CrossRefGoogle Scholar
  99. van Kleunen M et al (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103. doi: 10.1038/nature14910 PubMedCrossRefGoogle Scholar
  100. Wasowicz P (2016) Non-native species in the vascular flora of highlands and mountains of Iceland. Peer J 4:e1559. doi: 10.7717/peerj.1559 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Weaver T, Gustafson D, Lichthardt J (2001) Exotic plants in early and late seral vegetation of fifteen northern Rocky Mountain environments (HTs). West N Am Nat 61:417–427Google Scholar
  102. Xie T-p, Zhang G-f, Zhao Z-g, Du G-z, He G-y (2014) Intraspecific competition and light effect on reproduction of Ligularia virgaurea, an invasive native alpine grassland clonal herb. Ecol Evol 4:817–825. doi: 10.1002/ece3.975 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Xu M (2015) Investigation and evaluation of vascular plant resources in the Lhasa River Basin, Tibet. Masters Thesis. Lhasa, Tibet UniversityGoogle Scholar
  104. Zefferman E et al (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB Plants 7:056. doi: 10.1093/aobpla/plv056 CrossRefGoogle Scholar
  105. Zhang Y (2011) Prediction of potential suitable distribution of Compositae invasive species from North America with niche modles based on GIS. Masters Thesis. Nanjing, Nanjing Agricultural UniversityGoogle Scholar
  106. Zhang W, Yin D, Huang D, Du N, Liu J, Guo W, Wang R (2015) Altitudinal patterns illustrate the invasion mechanisms of alien plants in temperate mountain forests of northern China. For Ecol Manag 351:1–8. doi: 10.1016/j.foreco.2015.05.004 CrossRefGoogle Scholar
  107. Zhao X, Liu W, Zhou M (2013) Lack of local adaptation of invasive crofton weed (Ageratina adenophora) in different climatic areas of Yunnan Province, China. J Plant Ecol 6:316–322. doi: 10.1093/jpe/rts036 CrossRefGoogle Scholar
  108. Zong S, Xu J, Dege E, Wu Z, He H (2016) Effective seed distribution pattern of an upward shift species in alpine tundra of Changbai Mountains. Chin Geogr Sci 26:48–58. doi: 10.1007/s11769-015-0775-9 CrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2016

Authors and Affiliations

  • Jake M. Alexander
    • 1
    • 2
    Email author
  • Jonas J. Lembrechts
    • 3
  • Lohengrin A. Cavieres
    • 4
    • 5
  • Curtis Daehler
    • 6
  • Sylvia Haider
    • 7
    • 8
  • Christoph Kueffer
    • 1
  • Gang Liu
    • 9
  • Keith McDougall
    • 10
  • Ann Milbau
    • 11
  • Aníbal Pauchard
    • 12
    • 5
  • Lisa J. Rew
    • 13
  • Tim Seipel
    • 13
  1. 1.Department of Environmental Systems Science, Institute of Integrative BiologyETH ZurichZurichSwitzerland
  2. 2.Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
  3. 3.Centre of Excellence of Plant and Vegetation EcologyUniversity of AntwerpWilrijkBelgium
  4. 4.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  5. 5.Institute of Ecology and Biodiversity (IEB)ConcepciónChile
  6. 6.Department of BotanyUniversity of Hawaii at ManoaHonoluluUSA
  7. 7.Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle-WittenbergHalle (Saale)Germany
  8. 8.German Centre for Integrative Biodiversity Research (iDiv)LeipzigGermany
  9. 9.College of Life SciencesShaanxi Normal UniversityXi’anChina
  10. 10.Department of Ecology, Environment and EvolutionLa Trobe UniversityWodongaAustralia
  11. 11.Department of Biodiversity and Natural EnvironmentResearch Institute for Nature and Forest INBOBrusselsBelgium
  12. 12.Laboratorio de Invasiones Biológicas, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  13. 13.Department of Land Resources and Environmental SciencesMontana State UniversityBozemanUSA

Personalised recommendations