Skip to main content
Log in

Does leaf optical absorbance reflect the polyphenol content of alpine plants along an elevational gradient?

  • Short Communication
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Phenolic compounds play important ecological roles in alpine plants such as offering efficient UV protection at high level of incident sunlight. Methods to study those compounds are limited, as they require sophisticated analytical tools and are time-consuming. An alternative and portable device—Dualex©—has been recently developed to estimate the plant epidermal flavonoids by fluorescence sensing. Here, we assessed if the Dualex device accurately estimates the phenolic contents of three alpine plant species along an elevational gradient and be an alternative to the commonly used chemical methods. We characterized their leaf epidermal absorbance measured by the Dualex device, total phenol content assessed by the Folin–Ciocalteu assay and total flavonoid content estimated by high-performance liquid chromatography. The results showed that leaf epidermal absorbance was slightly positively correlated to total phenols for Rhododendron ferrugineum and Dryas octopetala, but not for Vaccinium myrtillus and to total flavonoids for the first species, but not for the two others. The leaf epidermal absorbance estimated by the Dualex device is not an accurate and universal predictor of total phenols or total flavonoid contents for alpine plant species. The limitations of this optical method could be mainly explained by the high intraspecific variability of plant chemical composition in heterogeneous environmental conditions met in alpine areas. We thus recommend a cautious use of this device to avoid misinterpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agati G, Tattini M (2010) Multiple functional roles of flavonoids in photoprotection. New Phytol 186:786–793

    Article  CAS  PubMed  Google Scholar 

  • Agati G, Cerovic ZG, Dalla Marta A, Di Stefano V, Pinelli P, Traversi ML, Orlandini S (2008) Optically-assessed preformed flavonoids and susceptibility of grapevine to Plasmopara viticola under different light regimes. Funct Plant Biol 35:77–84

    Article  CAS  Google Scholar 

  • Albert A, Sareedenchai V, Heller W, Seidlitz H, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO Oecol 160:1–8

    Article  Google Scholar 

  • Appel HM, Govenor HL, D’ascenzo M, Siska E, Schultz JC (2001) Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27:761–778

    Article  CAS  PubMed  Google Scholar 

  • Baptist F, Zinger L, Clement JC, Gallet C, Guillemin R, Martins JMF, Sage L, Shahnavaz B, Choler P, Geremia R (2008) Tannin impacts on microbial diversity and the functioning of alpine soils: a multidisciplinary approach. Environ Microbiol 10:799–809

    Article  CAS  PubMed  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Barthod S, Cerovic Z, Epron D (2007) Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? J Exp Bot 58:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Bidel LPR, Meyer S, Goulas Y, Cadot Y, Cerovic ZG (2007) Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence excitation spectra in leaves of three woody species. J Photochem Photobiol B 88:163–179

    Article  CAS  PubMed  Google Scholar 

  • Cartelat A, Cerovic ZG, Goulas Y, Meyer S, Lelarge C, Prioul JL, Barbottin A, Jeuffroy MH, Gate P, Agati G, Moya I (2005) Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crop Res 91:35–49

    Article  Google Scholar 

  • Castro-Alves VC, Cordenunsi BR (2014) Total soluble phenolic compounds quantification is not as simple as it seems. Food Anal Method 8:873–884

    Article  Google Scholar 

  • Cerovic ZG, Masdoumier G, Ben Ghozlen N, Latouche G (2012) A new optical leaf-clip meter for simultaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiol Plant 146:251–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Foley WJ, Moore BD (2005) Plant secondary metabolites and vertebrate herbivores—from physiological regulation to ecosystem function. Curr Opin Plant Biol 8:430–435

    Article  CAS  PubMed  Google Scholar 

  • Goulas Y, Cerovic ZG, Cartelat A, Moya I (2004) Dualex: a new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl Opt 43:4488–4496

    Article  CAS  PubMed  Google Scholar 

  • Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol Evol 15:238–243

    Article  PubMed  Google Scholar 

  • Iason GR, Dicke M, Hartley SE, Hartley SE (2012) The ecology of plant secondary metabolites: from genes to global processes. Cambridge University Press, New York

    Book  Google Scholar 

  • Ibanez S, Bernard L, Coq S, Moretti M, Lavorel S, Gallet C (2013) Herbivory differentially alters litter dynamics of two functionally contrasted grasses. Funct Ecol 27:1064–1074

    Article  Google Scholar 

  • Jaakola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell Environ 33:1239–1247

    CAS  Google Scholar 

  • Julkunen-Tiitto R, Nenadis N, Neugart S, Robson M, Agati G, Vepsäläinen J, Zipoli G, Nybakken L, Winkler B, Jansen MAK (2015) Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochem Rev 14:273–297

    Article  CAS  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above-and belowground plant tissues. Ecology 89:392–406

    Article  PubMed  Google Scholar 

  • Kolb CA, Pfündel EE (2005) Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. Plant, Cell Environ 28:580–590

    Article  CAS  Google Scholar 

  • Koricheva J, Barton KE (2012) Temporal changes in plant secondary metabolite production: patterns, causes and consequences. In: Iason GR, Dicke M, Hartley SE (eds) The ecology of plant secondary metabolites: from genes to global processes. Cambridge University Press, Cambridge, pp 34–55

    Chapter  Google Scholar 

  • Körner C (2003) Alpine plant life, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Li ZH, Wang Q, Ruan X, Pan CD, Jiang DA (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Lindstedt A, Markkinen N, Sinkkonen J, Suomela JP, Yang B (2014) Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). J Agric Food Chem 62:12015–12026

    Article  CAS  PubMed  Google Scholar 

  • Louis A, Petereit F, Lechtenberg M, Deters A, Hensel A (2010) Phytochemical characterization of Rhododendron ferrugineum and in vitro assessment of an aqueous extract on cell toxicity. Planta Med 76:1550–1557

    Article  CAS  PubMed  Google Scholar 

  • Martz F, Jaakola L, Julkunen-Tiitto R, Stark S (2010) Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in northern Europe following foliar development and along environmental gradients. J Chem Ecol 36:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Cerovic ZG, Goulas Y, Montpied P, Demotes-Mainard S, Bidel LPR, Moya I, Dreyer E (2006) Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: a signature of the carbon-nitrogen balance within leaves? Plant, Cell Environ 29:1338–1348

    Article  CAS  Google Scholar 

  • Morales LO, Tegelberg R, Brosché M, Keinänen M, Lindfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol 30:923–934

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Method Ecol Evol 4:133–142

    Article  Google Scholar 

  • Navas-Lopez JF, Ostos-Garrido FJ, Castillo A, Martin A, Gimenez MJ, Pistón F (2014) Phenolic content variability and its chromosome location in tritordeum. Front Plant Sci 5:1–10

    Article  Google Scholar 

  • Robberecht R, Caldwell MM, Billings WD (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61:612–619

    Article  Google Scholar 

  • Sanchez-Azofeifa A, Oki Y, Fernandes GW, Ball RA, Gamon J (2012) Relationships between endophyte diversity and leaf optical properties. Trees Struct Funct 26:291–299

    Article  Google Scholar 

  • Smirnoff N (2000) Ascorbate biosynthesis and function in photoprotection. Philos T R Soc B 355:1455–1464

    Article  CAS  Google Scholar 

  • Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375

    Article  CAS  PubMed  Google Scholar 

  • Steltzer H, Bowman WD (2005) Litter N retention over winter for a low and a high phenolic species in the alpine tundra. Plant Soil 275:361–370

    Article  CAS  Google Scholar 

  • Streb P, Feierabend J, Bligny R (1997) Resistance to photoinhibition of photosystem II and catalase and antioxidative protection in high mountain plants. Plant, Cell Environ 20:1030–1040

    Article  CAS  Google Scholar 

  • Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77

    Article  CAS  Google Scholar 

  • Tremblay N, Wang Z, Belec C (2007) Evaluation of the Dualex for the assessment of corn nitrogen status. J Plant Nutr 30:1355–1369

    Article  CAS  Google Scholar 

  • Wildi B, Lütz C (1996) Antioxidant composition of selected high alpine plant species from different altitudes. Plant, Cell Environ 19:138–146

    Article  CAS  Google Scholar 

  • Witzell J, Gref R, Näsholm T (2003) Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochem Syst Ecol 31:115–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of Serge Aubert, director of the Station Alpine Joseph Fourier. The authors thank the Zone Atelier Alpes for the acquisition of the Dualex device and the Station Alpine Joseph Fourier for logistic support. The authors thank one anonymous reviewer and C. Körner for their valuable comments and G. Yannic for his help in enhancing the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiphaine Lefebvre.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Fig. S1 Principal Component Analysis (PCA) of the leaf flavonoid composition (i.e., peaks detected by HPLC at 354 nm) of Dryas octopetala (Do), Rhododendron ferrugineum (Rf) and Vaccinium myrtillus (Vm).The first axis explains 24% of the variation and the second 13%. Points represent plants grouped by species with ellipses. Fig. S2 Adaxial leaf epidermal absorbance (LEA) in function of abaxial LEA for Dryas octopetala (Do), Rhododendron ferrugineum (Rf) and Vaccinium myrtillus (Vm). Regression lines are drawn when correlations are significant (p value<0.05). Fig. S3 Relationship between total phenols concentration expressed in mg of gallic acid equivalent per gram of dry mass and total flavonoids as the total area of flavonoid peaks determined by HPLC of Dryas octopetala (Do), Rhododendron ferrugineum (Rf) and Vaccinium myrtillus (Vm). Regression lines are drawn when p values<0.05, according to the values fitted by the mixed-effects model. Table S1 Peaks separated by HPLC in Dryas octopetala (Do), Rhododendron ferrugineum (Rf) and Vaccinium myrtillus (Vm) and their retention times. The p value and sign of correlation between the compound area (at 354 nm) and the LEA (calculated separately for each species) are given and in bold when significant (PDF 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefebvre, T., Millery-Vigues, A. & Gallet, C. Does leaf optical absorbance reflect the polyphenol content of alpine plants along an elevational gradient?. Alp Botany 126, 177–185 (2016). https://doi.org/10.1007/s00035-016-0167-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-016-0167-5

Keywords

Navigation