Advertisement

Alpine Botany

, Volume 126, Issue 1, pp 35–48 | Cite as

Impact of dysploidy and polyploidy on the diversification of high mountain Artemisia (Asteraceae) and allies

  • Gemma Mas de Xaxars
  • Teresa Garnatje
  • Jaume Pellicer
  • Sonja Siljak-Yakovlev
  • Joan Vallès
  • Sònia Garcia
Original Article

Abstract

Molecular cytogenetics and the study of genome size have been used to understand evolutionary and systematic relationships in many species. However, this approach has seldom been applied to alpine plants. A group of dysploid–polyploid high mountain Artemisia species, distributed from the European Sierra Nevada to Central Asian mountains, through the Pyrenees, the Alps and the Caucasus, is a good model to consider changes at the genome and chromosome levels. These small perennial Artemisia, found frequently in isolated populations, present highly disjunct distributions. Some are considered rare or even endangered. Here, we show results for nine species and 31 populations, including genome size (2C-values), fluorochrome banding and fluorescent in situ hybridisation of ribosomal RNA genes (rDNA). Significant intraspecific genome size variation is found in certain populations of A. eriantha and A. umbelliformis, but without taxonomic significance due to the absence of morphological or ecological differentiation. The number and position of GC-rich DNA bands is mostly coincidental with rDNA although there is an expansion of GC-rich heterochromatin in centromeres in some taxa. Ancestral character states have been reconstructed and x = 9 is inferred as the likely ancestral base number, while the dysploid x = 8 has appeared repeatedly during the evolution of Artemisia. On the basis of cytological observations, Robertsonian translocations are proposed for the appearance of dysploidy in the genus. A remarkable presence of x = 8-based species has been detected in the clade including high mountain species, which highlights the important role of dysploidy in the diversification of high mountain Artemisia. Conversely, polyploidy, though present in the alpine species, is more common in the rest of the genus, particularly in arctic species. Hypotheses on the mechanisms underpinning the relative abundance of dysploids and scarcity of polyploids in high mountain Artemisia are discussed.

Keywords

Alpine plants Base chromosome number Chromomycin A3 Fluorescent in situ hybridisation Genome size Molecular cytogenetics Ribosomal RNA genes Robertsonian translocation 

Notes

Acknowledgments

This work was supported by the Ministerio de Economía y Competividad from the Government of Spain (CGL2010-22234-C02-01,02/BOS and CGL2013-49097-C2-2-P), the Generalitat de Catalunya, government of Catalonia (“Ajuts a grups de recerca consolidats”, 2009SGR0439 and 2014SGR514) and the IRBIO (Institut de Recerca de la Biodiversitat). GMdX benefited from an ADR grant from Universitat de Barcelona and SG from a Juan de la Cierva postdoctoral contract of the Ministerio de Economía y Competitividad from the Government of Spain. We thank Cristina Roquet, María Sanz and Roser Vilatersana for their help in collecting plant material. Ricard Àlvarez, Jaume Comas, Chari González and Sonia Ruiz are thanked for their assistance in flow cytometric analyses, and Spencer Brown for supplying seeds of the internal standards used. We also thank Odile Robin with technical assistance at FISH slide preparation, Samuel Pyke for English proofreading and three anonymous reviewers for their helpful comments on earlier versions of the manuscript.

Supplementary material

35_2015_159_MOESM1_ESM.xlsx (26 kb)
List of DNA sequences used for phylogenetic analyses (XLSX 25 kb)
35_2015_159_MOESM2_ESM.jpg (305 kb)
Phylogenetic tree using ITS1, ITS2 and 3′ETS rDNA sequences of Artemisia (JPEG 304 kb)
35_2015_159_MOESM3_ESM.tif (28 kb)
Dynamite plot on mean genome sizes of x = 8 and x = 9 based Artemisia species from the HMA clade (dark blue) and from the rest of the genus (light blue). “n” indicates sample size (TIFF 27 kb)

References

  1. Akaike H (1979) A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 66:237–242CrossRefGoogle Scholar
  2. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baack EJ (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91:1783–1788CrossRefPubMedGoogle Scholar
  4. Bareka P, Siljak-Yakovlev S, Kamari G (2012) Molecular cytogenetics of Bellevalia (Hyacinthaceae) species occurring in Greece. Plant Syst Evol 298:421–430CrossRefGoogle Scholar
  5. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blöch C, Weiss-Schneeweiss H, Schneeweiss GM, Barfussa MHJ, Rebernig CA, Villaseñor JC, Stuessy TF (2009) Molecular phylogenetic analyses of nuclear and plastid DNA sequences support dysploid and polyploid chromosome number changes and reticulate evolution in the diversification of Melampodium (Millerieae, Asteraceae). Mol Phylogenet Evol 53:220–233CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brochmann C, Brysting A, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc 82:521–536CrossRefGoogle Scholar
  8. Burleigh JG, Barbazuk WB, Davis JM, Morse AM, Soltis PS (2012) Exploring diversification and genome size evolution in extant gymnosperms through phylogenetic synthesis. J BotGoogle Scholar
  9. Canestrelli D, Nascetti G (2008) Phylogeography of the pool frog Rana (Pelophylax) lessonae in the Italian peninsula and Sicily: multiple refugia, glacial expansions and nuclear–mitochondrial discordance. J Biogeogr 35:1923–1936CrossRefGoogle Scholar
  10. Darriba D, Taboada G, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772CrossRefPubMedPubMedCentralGoogle Scholar
  11. Doležel J, Binarova P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120CrossRefGoogle Scholar
  12. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom Part A 51:127–128CrossRefGoogle Scholar
  13. Evans GM, Durrant A, Rees H (1966) Associated nuclear changes in the induction of flax genotrophs. Nature 212:697–699CrossRefGoogle Scholar
  14. Garcia S, Sanz M, Garnatje T, Kreitschitz A, McArthur ED, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014CrossRefPubMedGoogle Scholar
  15. Garcia S, Garnatje T, Twibell JD, Vallès J (2006) Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars. Genome 49:244–253CrossRefPubMedGoogle Scholar
  16. Garcia S, Garnatje T, Hidalgo O, McArthur DE, Siljak-Yakovlev S, Vallès J (2007) Extensive ribosomal DNA (18S-5.8S-26S and 5S) colocalisation in the North American endemic sagebrushes (subgenus Tridentatae, Artemisia, Asteraceae) revealed by FISH. Plant Syst Evol 267:79–92CrossRefGoogle Scholar
  17. Garnatje T, Vallès J, Vilatersana R, Garcia-Jacas N, Susanna A, Siljak-Yakovlev S (2004) Molecular cytogenetics of Xeranthemum L. and related genera (Asteraceae, Cardueae). Plant Biol (Stuttg) 6:140–146CrossRefGoogle Scholar
  18. Geber G, Schweizer D (1987) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106CrossRefGoogle Scholar
  19. Gerlach W, Bedbrook J (1979) Cloning and characterisation of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gerlach W, Dyer T (1980) Sequence organisation of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedPubMedCentralGoogle Scholar
  21. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98CrossRefPubMedPubMedCentralGoogle Scholar
  22. Greilhuber J, Leitch IJ (2013) Genome size and the phenotype. In: Greilhuber J, Doležel J, Wendel JF (eds) Plant Genome Diversity, vol 2. Springer, Vienna, pp 323–344CrossRefGoogle Scholar
  23. Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T, Heneen WK, Maluszynska J (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kawatani T, Ohno T (1964) Chromosome numbers in Artemisia. Bull Natl Inst Hyg Sci 82:183–193Google Scholar
  26. Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leitch IJ, Hanson L, Lim KY, Kovarik A, Chase MW, Clarkson JJ, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814CrossRefPubMedPubMedCentralGoogle Scholar
  28. Levin DA (2002) The role of chromosomal change in plant evolution. Oxford University Press, New YorkGoogle Scholar
  29. Ling YR, Humphries CJ, Shultz L, Flora of China Editorial Committee (2006) The genus Artemisia L. Flora China 20:1151–1259Google Scholar
  30. Loureiro J, Castro M, Cerca de Oliveira J, Mota L, Torices R (2013) Genome size variation and polyploidy incidence in the alpine flora from Spain. Anales Jard Bot Madrid 70:39–47CrossRefGoogle Scholar
  31. Löve Á, Löve D (1949) The geobotanical significance of polyploidy. I. Polyploidy and latitude. Port Acta Biol Ser A 273–352Google Scholar
  32. Löve Á, Löve D (1967) Polyploidy and altitude: Mt. Washington. Biol Zentralbl Suppl 307–312Google Scholar
  33. Maddison W, Maddison D (2015) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  34. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51CrossRefPubMedGoogle Scholar
  35. Mas de Xaxars G, García-Fernández A, Barnola P, Martín J, Mercadé A, Vallès J, Vargas P, Vigo J, Garnatje T (2015) Phylogenetic and cytogenetic studies reveal hybrid speciation in Saxifraga subsect. Triplinervium (Saxifragaceae). J Syst Evol 53:53–65CrossRefGoogle Scholar
  36. Meudt HM, Rojas-Andrés BM, Prebble JM, Low E, Garnock-Jones PJ, Albach DC (2015) Is genome downsizing associated with diversification in polyploid lineages of Veronica? Bot J Linn Soc 178:243–266CrossRefGoogle Scholar
  37. Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A (2004) Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93:34–42CrossRefPubMedGoogle Scholar
  38. Morton J (1993) Chromosome numbers and polyploidy in the flora of Cameroons Mountain. Op Bot 121:159–172Google Scholar
  39. Mráz P, Chrtek J, Šingliarová B (2009) Geographical parthenogenesis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum. Bot Helv 119:41–51CrossRefGoogle Scholar
  40. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, New YorkGoogle Scholar
  42. Nie Z, Wen J, Gu Z, Boufford DE, Sun H (2005) Polyploidy in the flora of the Hengduan Mountains hotspot, southwestern China. Ann Missouri Bot Gard 92:275–306Google Scholar
  43. Nieto Feliner G (2011) Southern European glacial refugia: a tale of tales. Taxon 60:365–372Google Scholar
  44. Nieto Feliner G (2014) Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect Plant Ecol 16:265–278CrossRefGoogle Scholar
  45. Olanj N, Garnatje T, Sonboli A, Vallès J, Garcia S (2015) The striking and unexpected cytogenetic diversity of genus Tanacetum L. (Asteraceae): a cytometric and fluorescent in situ hybridisation study of Iranian taxa. BMC Plant Biol 15:174CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pellicer J, Garcia S, Garnatje T, Vallès J (2009) Changes in genome size in a fragmented distribution area: the case of Artemisia crithmifolia L. (Asteraceae, Anthemideae). Caryologia 62:152–160CrossRefGoogle Scholar
  47. Petit C, Thompson JD (1999) Species diversity and ecological range in relation to ploidy level in the flora of the Pyrenees. Evol Ecol 13:45–65CrossRefGoogle Scholar
  48. Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2015) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-121, http://CRAN.R-project.org/package=nlme
  49. Renny-Byfield S, Chester M, Kovařík A, Le Comber SC, Grandbastien MA, Deloger M, Nichols RA, Macas J, Novák J, Chase MW, Leitch AR (2011) Next generation sequencing reveals genome downsizing in allotetraploid Nicotiana tabacum, predominantly through the elimination of paternally derived repetitive DNAs. Mol Biol Evol msr112Google Scholar
  50. Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  52. Russell A, Safer S, Weiss-Schneeweiss H, Temsch E, Stuppner H, Stuessy TF, Samuel R (2013) Chromosome counts and genome size of Leontopodium species (Asteraceae: Gnaphalieae) from south-western China. Bot J Linn Soc 171:627–636CrossRefGoogle Scholar
  53. Sanz M, Vilatersana R, Hidalgo O, Garcia-Jacas N, Susanna A, Schneeweiss GM, Vallès J (2008) Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57:66–78Google Scholar
  54. Sanz M, Schneeweiss GM, Vilatersana R, Vallès J (2011) Temporal origins and diversification of Artemisia and allies (Anthemideae, Asteraceae). Collect Bot 30:7–15CrossRefGoogle Scholar
  55. Sanz M, Schönswetter P, Vallès J, Schneeweiss GM, Vilatersana R (2014) Southern isolation and northern long-distance dispersal shaped the phylogeography of the widespread, but highly disjunct, European high mountain plant Artemisia eriantha (Asteraceae). Bot J Linn Soc 174:214–226CrossRefGoogle Scholar
  56. Schneeweiss GM, Pachschwöll C, Tribsch A, Schönswetter P, Barfuss MH, Esfeld K, Weiss-Schneeweiss H, Thiv M (2013) Molecular phylogenetic analyses identify Alpine differentiation and dysploid chromosome number changes as major forces for the evolution of the European endemic Phyteuma (Campanulaceae). Mol Phylogenet Evol 69:634–652CrossRefPubMedGoogle Scholar
  57. Schweizer D, Ehrendorfer F (1983) Evolution of C-band patterns in Asteraceae-Anthemideae. Biol Zentralbl 102:637–655Google Scholar
  58. Semple J, Watanabe K (2009) A review of chromosome numbers in Asteraceae with hypotheses on chromosome base number evolution. In: Funk VA, Susanna A, Suetssy TF, Bayer RJ (eds) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Viena, pp 61–72Google Scholar
  59. Španiel S, Marhold K, Passalacqua NG, Zozomová-Lihová J (2011) Intricate variation patterns in the diploid-polyploid complex of Alyssum montanum-A. repens (Brassicaceae) in the Apennine Peninsula: evidence for long-term persistence and diversification. Am J Bot 98:1887–1904CrossRefPubMedGoogle Scholar
  60. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, LondonGoogle Scholar
  61. Suda J, Weiss-Schneeweiss H, Tribsch A, Schneeweiss GM, Trávníček P, Schönswetter P (2007) Complex distribution patterns of di-, tetra-, and hexaploid cytotypes in the European high mountain plant Senecio carniolicus (Asteraceae). Am J Bot 94:1391–1401CrossRefPubMedGoogle Scholar
  62. te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot 109:19–45CrossRefGoogle Scholar
  63. Tkach NV, Hoffmann MH, Röser M, Korobkov AA, von Hagen KB (2008) Parallel evolutionary patterns in multiple lineages of arctic Artemisia L. (Asteraceae). Evolution 62:184–198PubMedGoogle Scholar
  64. Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. species (Asteraceae, Anthemideae): systematic, evolutionary, and ecological implications. Genome 44:231–238CrossRefPubMedGoogle Scholar
  65. Trávníček P, Kirschner J, Chudáčková H, Rooks F, Štěpánek J (2013) Substantial genome size variation in Taraxacum stenocephalum (Asteraceae, Lactuceae). Folia Geobot 48:271–284CrossRefGoogle Scholar
  66. Vaio M, Gardner A, Emshwiller E, Guerra M (2013) Molecular phylogeny and chromosome evolution among the creeping herbaceous Oxalis species of sections Corniculatae and Ripariae (Oxalidaceae). Mol Phyl Evol 68:199–211CrossRefGoogle Scholar
  67. Vallès J, Siljak-Yakovlev S (1997) Cytogenetic studies in the genus Artemisia L. (Asteraceae): fluorochrome-banded karyotypes of five taxa, including the iberian endemic species Artemisia barrelieri Besser. Can J Bot 75(4):595–606CrossRefGoogle Scholar
  68. Vallès J, Garcia S, Hidalgo O, Martín J, Pellicer J, Sanz M, Garnatje T (2011) Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). Adv Bot Res 6:349–419CrossRefGoogle Scholar
  69. Vamosi J, McEwen J (2013) Origin, elevation, and evolutionary success of hybrids and polyploids in British Columbia, Canada. Botany 91:182–188CrossRefGoogle Scholar
  70. Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res 140:137–150CrossRefPubMedGoogle Scholar
  71. Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169CrossRefGoogle Scholar

Copyright information

© Swiss Botanical Society 2015

Authors and Affiliations

  1. 1.Laboratori de Botànica – Unitat associada CSIC, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Institut Botànic de Barcelona (IBB-CSIC-ICUB)BarcelonaSpain
  3. 3.Jodrell LaboratoryRoyal Botanic GardensRichmondUK
  4. 4.Laboratoire d’Evolution et SystématiqueUniversité Paris Sud, UMR8079 CNRS-UPS-AgroParis-TechOrsay CedexFrance

Personalised recommendations