Skip to main content
Log in

Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients

  • VEGETATION IN COLD ENVIRONMENTS UNDER CLIMATE CHANGE
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Arctic ecosystems face strong changes in snow conditions due to global warming. In contrast to habitat specialists, species occupying a wide range of microhabitats under different snow conditions may better cope with such changes. We studied how growth and reproduction of the dominant dwarf shrub Empetrum hermaphroditum varied among three habitat types differing in winter snow depth and summer irradiation, and whether the observed patterns were consistent along a local climatic gradient (sub-continental vs. sub-oceanic climates) and along a latitudinal gradient (northern Sweden vs. central Norway). Habitat type explained most of the variation in growth and reproduction. Shoots from shallow snow cover and high summer irradiation habitats had higher numbers of flowers and fruits, lower ramet heights, shorter shoot segments, lower numbers of lateral shoots and total biomass but higher leaf density and higher relative leaf allocation than shoots from habitats with higher snow depth and lower summer irradiation. In addition, biomass, leaf allocation and leaf life expectancy were strongly affected by latitude, whereas local climate had strong effects on seed number and seed mass. Empetrum showed high phenotypic trait variation, with a consistent match between local habitat conditions and its growth and reproduction. Although study areas varied strongly with respect to latitude and local climatic conditions, response patterns of growth and reproduction to habitats with different environmental conditions were consistent. Large elasticity of traits suggests that Empetrum may have the potential to cope with changing snow conditions expected in the course of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ACIA (2004) Arctic climate impact assessment: impacts of a warming Arctic. Cambridge University Press

  • AMAP (2012) Arctic climate issues 2011: changes in Arctic snow, water, ice and permafrost. SWIPA 2011 overview report. Arctic monitoring and assessment programme (AMAP), Oslo

  • Baskin CC, Zackrisson O, Baskin JM (2002) Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. Am J Bot 89:486–493. doi:10.3732/ajb.89.3.486

    Article  PubMed  Google Scholar 

  • Bell JNB, Tallis JH (1973) Empetrum nigrum L. J Ecol 61:289–305. doi:10.2307/2258934

    Article  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  Google Scholar 

  • Billings WD, Bliss LC (1959) An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology 40:388–397. doi:10.2307/1929755

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Bowles FW et al (2008) Impacts of extreme winter warming in the sub-Arctic: growing season responses of dwarf shrub heathland. Glob Change Biol 14:2603–2612. doi:10.1111/j.1365-2486.2008.01689.x

    Google Scholar 

  • Bokhorst SF, Bjerke JW, Tømmervik H et al (2009) Winter warming events damage sub-Arctic vegetation: consistent evidence from an experimental manipulation and a natural event. J Ecol 97:1408–1415. doi:10.1111/j.1365-2745.2009.01554.x

    Article  Google Scholar 

  • Bokhorst S, Bjerke JW, Tømmervik H et al (2012) Ecosystem response to climatic change: the importance of the cold season. Ambio 41:246–255. doi:10.1007/s13280-012-0310-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Boudreau S, Ropars P, Harper KA (2010) Population dynamics of Empetrum hermaphroditum (Ericaceae) on a subarctic sand dune: evidence of rapid colonization through efficient sexual reproduction. Am J Bot 97:770–781. doi:10.3732/ajb.0900304

    Article  PubMed  Google Scholar 

  • Bowman WD (1992) Inputs and storage of Nitrogen in winter snowpack in an alpine ecosystem. Arct Antarc Alp Res 24(3):211–215. doi:10.2307/1551659

    Article  Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge, Colorado. Biogeochemistry 32:93–113. doi:10.1007/BF00000354

    Article  Google Scholar 

  • Bylund H (1999) Climate and the population dynamics of two insect outbreak species in the north. Ecol Bull 47:54–62

    Google Scholar 

  • Callaghan T, Emanuelsson U (1985) Population structure and processes of tundra plants and vegetation. In: White J (ed) The population structure of vegetation. Springer, Netherlands, pp 399–439

    Chapter  Google Scholar 

  • Callaghan TV, Johansson M, Brown RD et al (2011) The changing face of Arctic snow cover: a synthesis of observed and projected changes. Ambio 40:17–31. doi:10.1007/s13280-011-0212-y

    Article  PubMed Central  Google Scholar 

  • Callaway RM, Brooker RW, Choler P et al (2002) Positive interactions among alpine plants increase with stress. Nature 417:844–848. doi:10.1038/nature00812

    Article  PubMed  CAS  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128. doi:10.1890/0012-9658(2003)084[1115:PPAIAP]2.0.CO;2

    Article  Google Scholar 

  • Campioli M, Leblans N, Michelsen A (2012) Twenty-two years of warming, fertilisation and shading of subarctic heath shrubs promote secondary growth and plasticity but not primary growth. PLoS ONE 7:e34842. doi:10.1371/journal.pone.0034842

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carlsson BA, Callaghan TV (1991) Positive plant interactions in Tundra vegetation and the importance of shelter. J Ecol 79:973–983. doi:10.2307/2261092

    Article  Google Scholar 

  • Chapin FS, Shaver GR (1985) Individualistic growth response of Tundra plant species to environmental manipulations in the field. Ecology 66:564–576. doi:10.2307/1940405

    Article  Google Scholar 

  • Cortés AJ, Waeber S, Lexer C, Sedlacek J, Wheeler JA, van Kleunen M, Bossdorf O, Hoch G, Rixen C, Wipf S, Karrenberg S (2014) Small-scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity. doi:10.1038/hdy.2014.19

    PubMed  Google Scholar 

  • Crawford RMM (2008) Cold climate plants in a warmer world. Plant Ecol Divers 1:285–297. doi:10.1080/17550870802407332

    Article  Google Scholar 

  • Dierßen K (1996) Vegetation nordeuropas. Ulmer, Stuttgart

    Google Scholar 

  • Dunne JA, Saleska SR, Fischer ML, Harte J (2004) Integrating experimental and gradient methods in ecological climate change research. Ecology 85:904–916. doi:10.1890/03-8003

    Article  Google Scholar 

  • Fletcher BJ, Press MC, Baxter R, Phoenix GK (2010) Transition zones between vegetation patches in a heterogeneous Arctic landscape: how plant growth and photosynthesis change with abundance at small scales. Oecologia 163:47–56. doi:10.1007/s00442-009-1532-5

    Article  PubMed  Google Scholar 

  • Frazer G, Canham C, Lertzman K (1999) Gap light analyzer (GLA), Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Simon Fraser University, Burnaby, British Columbia, and the Institute of Ecosystem Studies, Millbrook, New York

  • Gerdol R, Siffi C, Iacumin P et al (2013) Advanced snowmelt affects vegetative growth and sexual reproduction of Vaccinium myrtillus in a sub-alpine heath. J Veg Sci 24:569–579. doi:10.1111/j.1654-1103.2012.01472.x

    Article  Google Scholar 

  • Gonzalo-Turpin H, Hazard L (2009) Local adaptation occurs along altitudinal gradient despite the existence of gene flow in the alpine plant species Festuca eskia. J Ecol 97:742–751. doi:10.1111/j.1365-2745.2009.01509.x

    Article  Google Scholar 

  • Graae BJ, Alsos IG, Ejrnaes R (2008) The impact of temperature regimes on development, dormancy breaking and germination of dwarf shrub seeds from arctic, alpine and boreal sites. Plant Ecol 198:275–284. doi:10.1007/s11258-008-9403-4

    Article  Google Scholar 

  • Grogan P, Jonasson S (2006) Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type. Glob Change Biol 12:1479–1495. doi:10.1111/j.1365-2486.2006.01184.x

    Article  Google Scholar 

  • Haapasaari M (1988) The oligotrophic heath vegetation of northern Fennoscandia and its zonation. Acta Bot Fenn 135:1–219

    Google Scholar 

  • Hadley JL, Smith WK (1987) Influence of krummholz mat microclimate on needle physiology and survival. Oecologia 73:82–90. doi:10.1007/BF00376981

    Article  Google Scholar 

  • Hallingbäck T, Lönnell N, Weibull H, et al. (2006) Nationalnyckeln till Sveriges flora och fauna. Bladmossor: Sköldmossor—blåmossor. Bryophyta: Buxbaumia—Leucobryum. Artdatabanken, SLU, Uppsala

  • Hoshino T, Xiao N, Xiao N et al (2009) Cold adaptation in the phytopathogenic fungi causing snow molds. Mycoscience 50:26–38. doi:10.1007/S10267-008-0452-2

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK et al (eds) Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jäger EJ, Rothmaler W (2011) Exkursionsflora von Deutschland Bd. 2, Spektrum Akademischer Verlag, Heidelberg

  • Jonas T, Rixen C, Sturm M, Stoeckli V (2008) How alpine plant growth is linked to snow cover and climate variability. J Geophys Res 113:1–10. doi:10.1029/2007JG000680

    Google Scholar 

  • Jonasson S (1981) Plant communities and species distribution of low alpine Betula nana heaths in northernmost Sweden. Vegetatio 44:51–64. doi:10.1007/BF00119804

    Article  Google Scholar 

  • Jonasson S, Sköld SE (1983) Influences of frost-heaving on vegetation and nutrient regime of polygon-patterned ground. Vegetatio 53:97–112. doi:10.1007/BF00043030

    Article  Google Scholar 

  • Karlsson PS (1992) Leaf longevity in evergreen shrubs: variation within and among European species. Oecologia 91:346–349. doi:10.1007/BF00317622

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Kelley JJ, Weaver DF (1969) Physical processes at the surface of the Arctic tundra. Arctic 22:425–437. doi:10.14430/arctic3233

    Article  Google Scholar 

  • Kohler J, Brandt O, Johansson M, Callaghan T (2006) A long-term Arctic snow depth record from Abisko, northern Sweden, 1913–2004. Polar Res 25:91–113. doi:10.1111/j.1751-8369.2006.tb00026.x

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer Verlag, Berlin

    Book  Google Scholar 

  • Krebs CJ (1985) Ecology—the experimental analysis of distribution and abundance, 3rd edn. Harper & Row, Publishers

    Google Scholar 

  • Kudo G, Hirao AS (2006) Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: implications for global-change impacts. Popul Ecol 48:49–58. doi:10.1007/s10144-005-0242-z

    Article  Google Scholar 

  • Kudo G, Suzuki S (1999) Flowering phenology of alpine plant communities along a gradient of snowmelt timing. Polar Biosci 12:100–113

    Google Scholar 

  • Kudo G, Nordenhall U, Molau U (1999) Effects of snowmelt timing on leaf traits, leaf production, and shoot growth of alpine plants: comparisons along a snowmelt gradient in northern Sweden. Ecoscience 6:439–450

    Google Scholar 

  • Lid J, Lid DT (1994) Norsk flora. Det Norske Samlaget, Oslo

    Google Scholar 

  • McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: ontogeny or Optimality? A test along three resource gradients. Ecology 80:2581–2593. doi:10.1890/0012-9658(1999)080[2581:BAIPOO]2.0.CO;2

    Article  Google Scholar 

  • McCune B, Mefford M (2006) PC-ORD. Multivariate analysis of ecological data. Version 5.32. MjM Software. Gleneden Beach, Oregon, USA.

  • McGraw JB, Antonovics J (1983) Experimental ecology of Dryas octopetala. Ecotypes: I. ecotypic differentiation and life-cycle stages of selection. J Ecol 71:879–897. doi:10.2307/2259599

    Article  Google Scholar 

  • MET (Norwegian Meteorological Institute). http://sharki.oslo.dnmi.no/portal/page?_pageid=73,39035,73_39049&_dad=portal&_schema=PORTAL. Accessed 26 November 2013

  • Moberg R, Holmasen I (1999) Flechten von Nord- und Mitteleuropa. Ein Bestimmungsbuch, 1. Auflage. Spektrum Akademischer Verlag, Heidelberg

  • Mossberg B, Stenberg L (2008) Fjällflora. Wahlström & Widstrand, Stockholm

    Google Scholar 

  • Nilsson MC, Wardle DA (2005) Understory vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428. doi:10.1890/1540-9295(2005)003[0421:UVAAFE]2.0.CO;2

    Article  Google Scholar 

  • Nobis M (2005) SideLook 1.1. In: Software Informer. http://sidelook.software.informer.com/1.1/. Accessed 16 October 2013

  • Odland A, Munkejord HK (2008) Plants as indicators of snow layer duration in southern Norwegian mountains. Ecol Indic 8:57–68. doi:10.1016/j.ecolind.2006.12.005

    Article  Google Scholar 

  • Olofsson J, Ericson L, Torp M et al (2011) Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nat Clim Change 1:220–223. doi:10.1038/nclimate1142

    Article  CAS  Google Scholar 

  • Parsons AN, Welker JM, Wookey PA et al (1994) Growth responses of four sub-Arctic dwarf shrubs to simulated environmental change. J Ecol 82:307–318. doi:10.2307/2261298

    Article  Google Scholar 

  • Press MC, Potter JA, Burke MJW et al (1998) Responses of a subarctic dwarf shrub heath community to simulated environmental change. J Ecol 86:315–327. doi:10.1046/j.1365-2745.1998.00261.x

    Article  Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press

  • Ruohomäki K, Tanhuanpää M, Ayres MP et al (2000) Causes of cyclicity of Epirrita autumnata (Lepidoptera, Geometridae): grandiose theory and tedious practice. Popul Ecol 42:211–223. doi:10.1007/PL00012000

    Article  Google Scholar 

  • Saarinen T, Lundell R (2010) Overwintering of Vaccinium vitis-idaea in two sub-Arctic microhabitats: a reciprocal transplantation experiment. Polar Res 29:38–45. doi:10.1111/j.1751-8369.2010.00152.x

    Article  Google Scholar 

  • Sandberg G (1958) Fjällens vegetationsregioner, vegetationsserier och viktigaste växtekologiska faktorer. In: Skunke F (ed) Renbeten och deras gradering. Lappväsendet—Renforskningen. Meddelande 4 36–60

  • Schmitt J, Wulff RD (1993) Light spectral quality, phytochrome and plant competition. Trends Ecol Evol 8:47–51. doi:10.1016/0169-5347(93)90157-K

    Article  PubMed  CAS  Google Scholar 

  • Semchenko M, Lepik M, Götzenberger L, Zobel K (2012) Positive effect of shade on plant growth: amelioration of stress or active regulation of growth rate? J Ecol 100:459–466. doi:10.1111/j.1365-2745.2011.01936.x

    Article  Google Scholar 

  • Shabanov NV, Zhou L, Knyazikhin Y et al (2002) Analysis of interannual changes in northern vegetation activity observed in AVHRR data from 1981 to 1994. IEEE Trans Geosci Remote Sens 40:115–130. doi:10.1109/36.981354

    Article  Google Scholar 

  • Shevtsova A, Ojala A, Neuvonen S et al (1995) Growth and reproduction of dwarf shrubs in a subarctic plant community: annual variation and above-ground interactions with neighbours. J Ecol 83:263–275. doi:10.2307/2261565

    Article  Google Scholar 

  • Shevtsova A, Haukioja E, Ojala A (1997) Growth response of subarctic dwarf shrubs, Empetrum nigrum and Vaccinium vitis-idaea, to manipulated environmental conditions and species removal. Oikos 78:440–458. doi:10.2307/3545606

    Article  Google Scholar 

  • Sjögersten S, Wookey PA (2005) The role of soil organic matter quality and physical environment for Nitrogen mineralization at the forest-tundra ecotone in Fennoscandia. Arct Antarc Alp Res 37:118–126. doi:10.1657/1523-0430(2005)037[0118:TROSOM]2.0.CO;2

    Article  Google Scholar 

  • Skytte Christiansen M, von Krusenstjerna E, Waern M (1996) Vår flora i färg. Norsted & Söners, Stockholm

    Google Scholar 

  • SMHI (The Swedish Meteorological and Hydrological Institute). http://www.smhi.se/klimatdata/meteorologi/temperatur/dataserier-med-normalv%C3%A4rden-1.7354. Accessed 30 August 2013

  • Sonesson M, Callaghan TV (1991) Strategies of survival in plants of the Fenoscandian tundra. Arctic 44:95–105. doi:10.14430/arctic1525

    Article  Google Scholar 

  • Sonesson M, Lundberg B (1974) Late quaternary forest development of the Torneträsk area, North Sweden. 1. Structure of modern forest ecosystems. Oikos 25:121–133. doi:10.2307/3543633

    Article  Google Scholar 

  • Sonesson M, Osborne C, Sandberg G (1994) Epiphytic lichens as indicators of snow depth. Arct Antarc Alp Res 26:159–165. doi:10.2307/1551779

    Article  Google Scholar 

  • StatSoft (2010) STATISTICA Version 10.0. Statistics and analytics software package

  • Stuefer JF, Huber H (1998) Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117:1–8. doi:10.1007/s004420050624

    Article  Google Scholar 

  • Sturm M, Holmgren J, McFadden JP et al (2001) Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14:336–344. doi:10.1175/1520-0442(2001)014<0336:SSIIAT>2.0.CO;2

    Article  Google Scholar 

  • Szmidt AE, Nilsson MC, Briceño E et al (2002) Establishment and genetic structure of Empetrum hermaphroditum populations in northern Sweden. J Veg Sci 13:627–634. doi:10.1111/j.1654-1103.2002.tb02090.x

    Google Scholar 

  • Tenow O (1996) Hazards to a mountain birch forest—Abisko in perspective. Ecol Bull 45:104–114

    Google Scholar 

  • Tojo M, Newsham KK (2012) Snow moulds in polar environments. Fungal Ecol 5:395–402. doi:10.1016/j.funeco.2012.01.003

    Article  Google Scholar 

  • Tremp H (2005) Aufnahme und Analyse vegetationsökologischer Daten: 41 Tabellen. Ulmer, Stuttgart (Hohenheim)

    Google Scholar 

  • Tybirk K, Nilsson MC, Michelsen A et al (2000) Nordic Empetrum dominated ecosystems: function and susceptibility to environmental changes. Ambio 29:90–97. doi:10.1579/0044-7447-29.2.90

    Google Scholar 

  • Ursing B (1953) Svenska växter i text och cild. Cryptogamer. Nordisk rotogravyr, Stockholm

  • Virtanen R, Eurola S (1997) Middle oroarctic vegetation in Finland and middle-northern arctic vegetation on Svalbard. Svenska växtgeografiska sällsk

  • Walker MD, Wahren CH, Hollister RD et al (2006) Plant community responses to experimental warming across the tundra biome. PNAS 103:1342–1346. doi:10.1073/pnas.0503198103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weih M (1998) Seasonality of nutrient availability in soils of subarctic mountain birch woodlands, Swedish Lapland. Arct Antarc Alp Res 30:19–25. doi:10.2307/1551741

    Article  Google Scholar 

  • Welden C, Slauson W (1986) The intensity of competition versus its importance—an overlooked distinction and some implications. Q Rev Biol 61:23–44. doi:10.1086/414724

    Article  PubMed  CAS  Google Scholar 

  • Wheeler JA, Hoch G, Cortés AJ, Sedlacek J, Wipf S, Rixen C (2014) Increased spring freezing vulnerability for alpine shrubs under early snowmelt. Oecologia 175:219–229. doi:10.1007/s00442-013-2872-8

    Article  PubMed  CAS  Google Scholar 

  • Wipf S (2010) Phenology, growth, and fecundity of eight subarctic tundra species in response to snowmelt manipulations. Plant Ecol 207:53–66. doi:10.1007/s11258-009-9653-9

    Article  Google Scholar 

  • Wipf S, Rixen C (2010) A review of snow manipulation experiments in Arctic and alpine tundra ecosystems. Polar Res 29:95–109. doi:10.3402/polar.v29i1.6054

    Article  Google Scholar 

  • Wipf S, Rixen C, Mulder CPH (2006) Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra community. Glob Change Biol 12:1496–1506. doi:10.1111/j.1365-2486.2006.01185.x

    Article  Google Scholar 

  • Wipf S, Stoeckli V, Bebi P (2009) Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim Change 94:105–121. doi:10.1007/s10584-009-9546-x

    Article  Google Scholar 

  • Wookey PA, Parsons AN, Welker JM et al (1993) Comparative responses of phenology and reproductive development to simulated environmental change in sub-Arctic and high Arctic plants. Oikos 67:490–502. doi:10.2307/3545361

    Article  Google Scholar 

Download references

Acknowledgments

Field assistance was provided by Josef Scholz-vom Hofe, Sigrid Lindmo, Ingvil Kålås and Emmanuel Gardiner. We further thank Gabriel Schachtel for statistical advice, the director and staff of the Abisko Scientific Research Station for climate data, logistic support and accommodation. We are very grateful to Sonja Wipf and all anonymous reviewers for fruitful comments on an earlier draft of this manuscript, and to Darya Anderson and Christina Puzzolo for checking the English. Financial support was obtained from the Deutsche Forschungsgemeinschaft (DFG, grant EC209/9-1). All help is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam J. Bienau.

Additional information

This article is part of the special issue Vegetation in cold environments under climate change.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material S1.

To Bienau MJ, Hattermann D, Kröncke M, Kretz L, Otte A, Eiserhardt WL, Milbau A, Graae BJ, Durka W, Eckstein RL (2014) Snow cover consistently affects morphological traits in Empetrum hermaphroditum across latitudinal and local climatic gradients. Alpine Botany.

Corresponding author: Miriam Bienau, Institute of Landscape Ecology and Resource Management, Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig University Giessen, Heinrich- Buff-Ring 26-32, DE-35392 Giessen, Germany, E-Mail: Miriam.J.Bienau@umwelt.uni-giessen.de; Phone: +49 641 99 37188; Fax: +49 641 99 37169.

Graphs show temperature curves of North-SC, South-SC, North-SO and South-SO from 1st of April to 27th of June 2013. Temperature was measured at the soil surface with data loggers (micro-T, DS1922L; NexSens Technology, Alpha, Ohio, U.S.A.) in each plot (N = 120) every three hours. Solid line represents birch forest, dashed line alpine tundra with deep snow cover and dot-dashed line alpine tundra with shallow snow cover.

Electronic Supplementary Material S2.

To Bienau MJ, Hattermann D, Kröncke M, Kretz L, Otte A, Eiserhardt WL, Milbau A, Graae BJ, Durka W, Eckstein RL (2014) Snow cover consistently affects morphological traits in Empetrum hermaphroditum across latitudinal and local climatic gradients. Alpine Botany.

Corresponding author: Miriam Bienau, Institute of Landscape Ecology and Resource Management, Research Centre for BioSystems, Land Use and Nutrition (IFZ), Justus-Liebig University Giessen, Heinrich- Buff-Ring 26-32, DE-35392 Giessen, Germany, E-Mail: Miriam.J.Bienau@umwelt.uni-giessen.de; Phone: +49 641 99 37188; Fax: +49 641 99 37169.

Photographs showing Empetrum shoots from the sub-alpine birch forest (left), low alpine tundra with deep snow cover (middle) and low alpine tundra with shallow snow cover (right).

Supplementary material 1 (TIFF 244 kb)

Supplementary material 2 (TIFF 3211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bienau, M.J., Hattermann, D., Kröncke, M. et al. Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients. Alp Botany 124, 115–129 (2014). https://doi.org/10.1007/s00035-014-0137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-014-0137-8

Keywords

Navigation