Skip to main content

Advertisement

Log in

Contribution of multi-source remote sensing data to predictive mapping of plant-indicator gradients within Swiss mire habitats

Eignung von Fernerkundungsdaten aus mehreren Quellen zur räumlichen Modellierung floristischer Zeigerwertgradienten in Schweizer Moorhabitaten

  • Published:
Botanica Helvetica Aims and scope Submit manuscript

Abstract

Remote-sensing plays an important role in wetland monitoring on the regional and global scale. In this study we assessed the potential of different optical sensors to map floristic indicator gradients across complex mire habitats at the stand level. We compared traditional CIR photographs from RC30 cameras with modern digital ADS40 data and SPOT5 satellite images as well as fine-scale topo-structure derived from LIDAR data. We derived about 70 spectral and 30 topo-structural variables and evaluated their ability to predict the mean ecological indicator values of the vegetation across a sample of 7 mire objects. The airborne images (RC30, ADS40) and the LIDAR data were found to have a high potential for use in vegetation mapping; they explained on average 50% of the variation in observed ecological indicator values. The RC30 data slightly outperformed the less optimally collected ADS40 data. The LIDAR topo-structural variables showed equal overall predictive power as the airborne images, but they performed clearly better in predicting soil moisture, soil dispersion and light. Combining both airborne images and topo-structural data improved the predictions of all indicator values considerably. The combined use of these data sources is therefore recommended for use in fine-scale monitoring of priority habitats in nature conservation.

Zusammenfassung

Fernerkundung spielt eine bedeutende Rolle in der Dauerbeobachtung von Feuchtgebieten auf regionaler Ebene. Die vorliegende Studie untersuchte deren Eignung zur räumlichen Modellierung floristischer Zeigerwertgradienten auf der Bestandesebene komplexer Moorhabitate. Aus operationellen Gründen eines nationalen Beobachtungssystems waren nur landesweit abrufbare Datenquellen von Interesse. Traditionelle Infrarot-Luftbilder (RC30) wurden daher mit modernen ADS40 Luftbilddaten und SPOT5 Satellitenbildern verglichen. Zusätzlich standen erstmals präzise Gelände- und Oberflächenmodelle (LIDAR) zur Verfügung, welche die Relief- und Gehölzstruktur kleinsträumig abbilden. Der Sensorenvergleich erfolgte in sieben Moorhabitaten und bezüglich sieben Zeigerwerten (49 Testsituationen). Die Modelle basierten auf einem einheitlichen Satz von 100 erklärenden Variablen (70 spektrale und 30 topo-strukturelle Merkmale). Als Modelltyp wurde PLS-Regression gewählt. Die Analyse der sensor-spezifischen Modellbeiträge (r 2cv ) erfolgte mittels beschreibender Statistik und informellen multiplen Paartests (Vorzeichen-Rangsummen-Test). Die spektralen Luftbild- (RC30, ADS40) und Höhendaten (LIDAR) zeigten ein beträchtliches Prognosepotential. Die traditionellen RC30 Daten erwiesen sich den zeitlich weniger optimiert erhobenen ADS40 Daten als leicht überlegen. Die Relief- und Gehölzstrukturdaten bewiesen ein zumindest gleichwertiges Vorhersagepotenzial mit Vorteilen in der Modellierung von Feuchte, Dispersität und Licht. Alle Zeigerwerte profitierten von der Kombination beider Informationstypen. Die Zeigerwert-spezifischen Verbesserungen variierten je nach spektralem Partner (RC30, ADS40, SPOT5). Einheitlich maximale Gewinne zeigten die ADS40 Daten, womit ihr individuelles Defizit gegenüber den RC30 Daten grossteils verfällt. Umgekehrt verbesserte die zusätzliche Spektralinformation besonders Modelle zu Bodenreaktion, Nährstoffgehalt und Humus. Die gewonnenen Erkenntnisse dienen der Potenzialabschätzung von Fernerkundungsdaten für vergleichbare Studien. Die Beiträge der individuellen oder paarweise kombinierten Datentypen lassen sich zudem ökologisch interpretieren. Sie deuten an, wie stark floristische Zeigerwertgradienten in Moorhabitaten von Reliefeigenschaften und Gehölzstruktur oder von anderen ökologischen Faktoren mit Bezug zu Biomasse und Produktivität bestimmt sind, welche nur von den Spektraldaten erfasst werden. Aufgrund der Übertragbarkeit der Methode auf weitere Lebensräume sollten die Resultate von allgemeinem Interesse sein, sowohl aus Sicht des lokalen Naturschutzmanagements als auch aus Sicht der operationellen Biotopbeobachtung im Naturschutz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CIR:

Colour infrared

DTM:

Digital terrain model

DSM:

Digital surface model

LIDAR:

Light detection and ranging

NIR:

Near infrared

PLS:

Partial least squares

VHSR:

Very high spatial resolution

References

  • Alexandridis TK, Lazaridou E, Tsirika A, Zalidis GC (2009) Using earth observation to update a Natura 2000 habitat map for a wetland in Greece. J Environ Manag 90:2243–2251

    Article  Google Scholar 

  • Atzberger C (2004) Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sens Environ 93:53–67

    Article  Google Scholar 

  • Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens Rev 13:95–120

    Google Scholar 

  • Barducci A, Guzzi D, Marcoionni P, Pippi I (2009) Aerospace wetland monitoring by hyperspectral imaging sensors: a case study in the coastal zone of San Rossore Natural Park. J Environ Manag 90:2278–2286

    Article  Google Scholar 

  • Baret F, Guyot G (1991) Potentials and limits of vegetation indexes for LAI and APAR assessment. Remote Sens Environ 35:161–173

    Article  Google Scholar 

  • Bunce RGH, Metzger MJ, Jongman RHG, Brandt J, De Blust G, Elena-Rossello R, Groom GB, Halada L, Hofer G, Howard DC, Kovar P, Mucher CA, Padoa-Schioppa E, Paelinx D, Palo A, Perez-Soba M, Ramos IL, Roche P, Skanes H, Wrbka T (2008) A standardized procedure for surveillance and monitoring European habitats and provision of spatial data. Landsc Ecol 23:11–25

    Article  Google Scholar 

  • Cramer M (2005) Digital airborne cameras—status and future. In: ISPRS Workshop “High Resolution Earth Imaging for Geospatial Information”. Hannover

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review. Basic Appl Ecol 4:493–506

    Article  Google Scholar 

  • Dudoit S, van der Laan MJ (2008) Multiple testing procedures with applications to genomics. Springer, New York

    Book  Google Scholar 

  • Ecker K, Küchler M, Feldmeyer-Christe E, Graf U, Waser LT (2008) Predictive mapping of floristic site conditions across mire habitats: evaluating data requirements. Community Ecol 9:133–146

    Article  Google Scholar 

  • Ellenberg H (1974) Zeigerwerte der Gefässpflanzen Mitteleuropas. Scr Geobot 9:97

  • Ellenberg H, Webwe HE, Düll R, Wirth V, Werner W, Paulissen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Scr Geobot 18:258

    Google Scholar 

  • Feldmeyer-Christe E, Ecker K, Kuchler M, Graf U, Waser L (2007) Improving predictive mapping in Swiss mire ecosystems through re-calibration of indicator values. Appl Veg Sci 10:183–192

    Article  Google Scholar 

  • Gilmore MS, Wilson EH, Barrett N, Civco DL, Prisloe S, Hurd JD, Chadwick C (2008) Integrating multi-temporal spectral and structural information to map wetland vegetation in a lower Connecticut River tidal marsh. Remote Sens Environ 112:4048–4060

    Article  Google Scholar 

  • Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. Water SA (Pretoria) 33:145–151

    Google Scholar 

  • Graf U, Küchler M, Ecker K, Feldmeyer-Christe E, Grosvernier P, Berchten F, Lugon A, David R, Marti F (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Erfolgskontrolle Moorschutz. In: Klaus G (ed) Umwelt-Zustand Nr. 0730. Bundesamt für Umwelt, Bern, p 97

    Google Scholar 

  • Grünig A, Steiner GM, Ginzler C, Graf U, Küchler M (2005) Approaches to swiss mire monitoring/Vorschläge für das Moor-Monitoring in der Schweiz. Stapfia 85:435–452

    Google Scholar 

  • Harris A, Bryant RG (2009) A multi-scale remote sensing approach for monitoring northern peatland hydrology: present possibilities and future challenges. J Environ Manag 90:2178–2188

    Article  Google Scholar 

  • Houborg R, Soegaard H, Boegh E (2007) Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using Terra and Aqua MODIS reflectance data. Remote Sens Environ 106:39–58

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Jacquemoud S, Bacour C, Poilve H, Frangi JP (2000) Comparison of four radiative transfer models to simulate plant canopies reflectance: direct and inverse mode. Remote Sens Environ 74:471–481

    Article  Google Scholar 

  • Jensen JLR, Humes KS, Vierlin LA, Hudak AT (2008) Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sens Environ 112:3947–3957

    Article  Google Scholar 

  • Johansen K, Coops NC, Gergel SE, Stange Y (2007) Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification. Remote Sens Environ 110:29–44

    Article  Google Scholar 

  • Jones K, Lanthier Y, van der Voet P, van Valkengoed E, Taylor D, Fernandez-Prieto D (2009) Monitoring and assessment of wetlands using earth observation: the GlobWetland project. J Environ Manag 90:2154–2169

    Article  Google Scholar 

  • Judd C, Steinberg S, Shaughnessy F, Crawford G (2007) Mapping salt marsh vegetation using aerial hyperspectral imagery and linear unmixing in Humboldt bay, California. Wetlands 27:1144–1152

    Article  Google Scholar 

  • Kellenberger TW, Nagy P (2008) Potential of the ADS40 Aerial Scanner for archaeological prospection in Rheinau, Switzerland. In: XXI congress international society for photogrammetry and remote sensing. Beijing, China

  • Korpela I, Koskinen M, Vasander H, Holopainen M, Minkkinen K (2009) Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For Ecol Manag 258:1549–1566

    Article  Google Scholar 

  • Küchler M, Ecker K, Feldmeyer-Christe E, Graf U, Küchler H, Waser LT (2004) Combining remotely sensed spectral data and digital surface models for fine-scale modelling of mire ecosystems. Community Ecol 5:55–68

    Article  Google Scholar 

  • Küchler M, Ecker K, Feldmeyer E, Graf U, Waser LT (2007) Predictive models of mire habitats: bias in detection of changes. In: Kubrak J, Okruszko T, Ignar S (eds) Wetlands: monitoring, modelling and management. Taylor & Francis, London, pp 91–100

    Google Scholar 

  • Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröffentlichungen des Geobotanischen Institutes der Eidg. Techn. Hochschule, Stiftung Rübel, Zürich

  • MacAlister C, Mahaxay M (2009) Mapping wetlands in the Lower Mekong Basin for wetland resource and conservation management using Landsat ETM images and field survey data. J Environ Manag 90:2130–2137

    Article  Google Scholar 

  • MacKay H, Finlayson CM, Fernandez-Prieto D, Davidson N, Pritchard D, Rebelo LM (2009) The role of earth observation (EO) technologies in supporting implementation of the Ramsar Convention on Wetlands. J Environ Manag 90:2234–2242

    Article  CAS  Google Scholar 

  • Malenovsky Z, Mishra KB, Zemek F, Rascher U, Nedbal L (2009) Scientific and technical challenges in remote sensing of plant canopy reflectance and fluorescence. J Exp Bot 60:2987–3004

    Article  CAS  PubMed  Google Scholar 

  • McMorrow JM, Cutler MEJ, Evans MG, Al-Roichdi A (2004) Hyperspectral indices for characterizing upland peat composition. Int J Remote Sens 25:313–325

    Article  Google Scholar 

  • Miller RG (1981) Simultaneous statistical inference, 2nd edn. Springer, New York

    Google Scholar 

  • Mosteller F, Tukey JW (1977) Data analysis and regression: a second course in statistics. Addison-Wesley, Reading

    Google Scholar 

  • Pearson RG, Dawson TP, Liu C (2004) Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27:285–298

    Article  Google Scholar 

  • Petrie G, Walker AS (2007) Airborne digital imaging technology: a new overview. Photogramm Rec 22:203–225

    Article  Google Scholar 

  • Qi J, Chehbouni A, Huete AR, Kerr YH, Sorooshian S (1994) A modified soil adjusted vegetation index. Remote Sens Environ 48:119–126

    Article  Google Scholar 

  • Richardson AJ, Everitt JH (1992) Using spectral vegetation indices to estimate rangeland productivity. Geocarto Int 1:63–69

    Article  Google Scholar 

  • Richardson AJ, Wiegand CL (1977) Distinguishing vegetation from soil background information. Photogramm Eng Remote Sens 43:1541–1552

    Google Scholar 

  • Rydin H, Eglum JK (2006) Biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  • Schmidtlein S (2005) Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J Appl Ecol 42:966–974

    Article  Google Scholar 

  • Schmidtlein S, Sassin J (2004) Mapping of continuous floristic gradients in grasslands using hyperspectral imagery. Remote Sens Environ 92:126–138

    Article  Google Scholar 

  • Straatsma MW, Baptist M (2008) Floodplain roughness parameterization using airborne laser scanning and spectral remote sensing. Remote Sens Environ 112:1062–1080

    Article  Google Scholar 

  • Thuiller W, Araujo MB, Lavorel S (2004) Do we need land-cover data to model species distributions in Europe? J Biogeogr 31:353–361

    Google Scholar 

  • Ustin SL, Roberts DA, Gamon JA, Asner GP, Green RO (2004) Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523–534

    Article  Google Scholar 

  • Verrelst J, Geerling GW, Sykora KV, Clevers J (2009) Mapping of aggregated floodplain plant communities using image fusion of CASI and LiDAR data. Int J Appl Earth Obs Geoinf 11:83–94

    Article  Google Scholar 

  • Waser LT, Baltsavias E, Ecker K, Eisenbeiss H, Ginzler C, Küchler M, Thee P, Zhang L (2008a) High-resolution digital surface models (DSMs) for modelling fractional shrub/tree cover in a mire environment. Int J Remote Sens 29:1261–1276

    Article  Google Scholar 

  • Waser LW, Eisenbeiss H, Kuechler M, Baltsavias B (2008b) Potential and limits of airborne remote sensing data for extraction of fractional canopy cover and forest stands and detection of tree species. In: The international archives of the photogrammetry, remote sensing and spatial information sciences, vol XXXVII. Part B8. Beijing, pp 1405–1412

  • Wiegand CL, Richardson AJ, Escobar DE, Gerbermann AH (1991) Vegetation indexes in crop assessments. Remote Sens Environ 35:105–119

    Article  Google Scholar 

  • Wold S, Trygg J, Berglund A, Antti H (2001) Some recent developments in PLS modeling. Chemom Intell Lab Syst 58:131–150

    Article  CAS  Google Scholar 

  • Zimmermann NE, Edwards TCJ, Moisen GG, Frescino TS, Blackard JA (2007) Remote sensing based predictors improve distribution models of rare, early successional and broadleaf tree species in Utah. J Appl Ecol 44:1057–1067

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Otto Wildi and Elizabeth Feldmeyer-Christe for critical feedback on the paper and to Silvia Dingwall and Peter Longatti for the English revision. The monitoring program was funded by the Swiss Federal Office for the Environment FOEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ecker.

Additional information

Responsible editor: Sabine Güsewell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ecker, K., Waser, L.T. & Küchler, M. Contribution of multi-source remote sensing data to predictive mapping of plant-indicator gradients within Swiss mire habitats. Bot. Helv. 120, 29–42 (2010). https://doi.org/10.1007/s00035-010-0070-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-010-0070-4

Keywords

Navigation