Advertisement

Botanica Helvetica

, Volume 119, Issue 1, pp 41–51 | Cite as

Geographical parthenogenesis, genome size variation and pollen production in the arctic-alpine species Hieracium alpinum

  • Patrik Mráz
  • Jindřich Chrtek
  • Barbora Šingliarová
Article

Abstract

Hieracium alpinum L. (Asteraceae) is an arctic-alpine species distributed throughout Europe with both diploid and triploid cytotypes. We determined the ploidy levels of plants from 23 populations from Austria, Bosnia and Herzegovina, Finland, Italy, Norway, Romania, Slovakia, Switzerland and Ukraine. Data showed a non-overlapping pattern of cytotype distribution: sexually reproducing diploids (2n = 2x = 18) occur solely in the Eastern and Southern Carpathians, while apomictic triploids (2n = 3x = 27) cover the rest of the range. Such clear-cut allopatry is rather rare in vascular plants with geographical parthenogenesis. Comparison of absolute genome size indicates genome downsizing (by on average 3.7%) of haploid DNA amount in triploids relative to diploids. Genome size further correlated with longitude and latitude in the Alps, with decreasing absolute DNA content from west to east, and from south to north. While previously published data indicated complete male sterility of triploid plants, we found that plants from the Alps and Bosnia and Herzegovina commonly produced some pollen, whereas populations from the Western Carpathians and Scandinavia seemed to be almost completely pollen sterile. Scenarios about the evolution of geographical parthenogenesis in H. alpinum are discussed.

Keywords

Apomixis Chromosome numbers Compositae Flow cytometry Genome downsizing Male sterility Polyploidy 

Résumé

Hieracium alpinum L. (au sens strict) est une espèce arctique-alpine d’aire de répartition très large, comprenant les régions nordiques (le Groenland, l’Islande, l’Ecosse, la Scandinavie et le nord de la Russie) et les montagnes de l’Europe continentale (les Alpes, les Carpates, les Sudètes, les Vosges et le plateau de Vranica). Dans cette étude, nous avons compté le nombre chromosomique et estimé la ploïdie par cytométrie de flux de plantes provenant de 23 populations échantillonnées en Autriche, Bosnie et Herzégovine, Finlande, Italie, Norvège, Roumanie, Slovaquie, Suisse et Ukraine. Ces données et celles de la littérature montrent une nette séparation spatiale entre deux cytotypes différents: Les populations diploïdes sexuées sont réparties uniquement dans les Carpates orientales et occidentales (Roumanie et Ukraine), tandis que les populations triploïdes apomictiques occupent l’aire de répartition restante. Ce type d’allopatrie stricte est rare chez les plantes avec parthénogenèse géographique. En comparant la taille du génome haploïde (1Cx) des plantes triploïdes avec celui des plantes diploïdes, nous avons identifié une sensible réduction de taille du génome polyploïde (la divergence moyenne est 3.7%). Parmi les plantes triploïdes, les individus du plateau de Vranica (Bosnie et Herzégovine) ont significativement moins d’ADN que les triploïdes provenant des Alpes ou des Carpates occidentales (2C = 10.28 pg d’ADN contre 11.02 et 10.93 pg, respectivement). Une corrélation significative entre la taille du génome et la longitude et la latitude a été révélée dans les Alpes, avec des valeurs décroissantes d’ouest en est, et du sud vers le nord. Tandis que les données publiées indiquaient une stérilité mâle complète chez les triploïdes, nous avons trouvé des plantes triploïdes provenant des Alpes et du plateau de Vranica produisant du pollen, bien qu’en faible quantité et de taille hétérogène. Divers scénarios sur l’évolution de la parthénogénèse géographique chez H. alpinum sont discutés à la lumière de ces nouveaux résultats.

Notes

Acknowledgments

Authors are thankful to colleagues and friends, mentioned in Appendix 2, for their kind help with sampling and/or co-travelling, to Tim Rich and Martin Henery for English revision of manuscript and Róbert Šuvada for map preparation and providing of WorldClim data. We greatly appreciate the suggestions of two anonymous reviewers on the first draft of manuscript. This study was performed as a part of Marie Curie Intra European fellowship (no. 10961, to PM). Sampling in summer 2005 (before official starting of this European project) was supported from the grant of The Research and Development Support Agency of Slovak Republic (no. 006404), The Czech Science Foundation (grant no. 206/05/0657, to JC) and Ministry of Education, Youth and Sports of the Czech Republic (grant no 0021620828, to JC).

Supplementary material

35_2009_55_MOESM1_ESM.doc (49 kb)
Supplementary material 1 (DOC 49 kb)
35_2009_55_MOESM2_ESM.doc (48 kb)
Supplementary material 2 (DOC 47.5 kb)

References

  1. Alexander MP (1969) Differential staining of aborted and non-aborted pollen. Stain Technol 44:117–122PubMedGoogle Scholar
  2. Alsos IG, Eidesen PB, Ehrich D, Skrede I, Westergaard K, Jacobsen GH, Landvik JY, Taberlet P, Brochmann C (2007) Frequent long-distance plant colonization in the changing Arctic. Science 316:1606–1609PubMedCrossRefGoogle Scholar
  3. Aparicio A (1994) Karyological studies in Hieracium baeticum (Asteraceae) from the “Parque Natural de la Sierra de Grazalema” (Southern Spain). Fl Medit 4:25–34Google Scholar
  4. Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca RatonGoogle Scholar
  5. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117CrossRefGoogle Scholar
  6. Bierzychudek P (1985) Pattern in plant parthenogenesis. Experientia 41:1255–1264CrossRefGoogle Scholar
  7. Böcher TW, Larsen K (1950) Chromosome numbers of some arctic or boreal flowering plants. Medd Grønl 147:28Google Scholar
  8. Bräutigam S (1992) Hieracium L. In: Meusel H, Jäger EJ (Eds) Vergleichende Chorologie der zentraleuropäischen Flora 3. Gustav Fischer, Jena etc., pp 325–333, 550–560Google Scholar
  9. Castro M, Mateo G, Rossello JA (2007) Chromosome numbers in Hieracium and Pilosella species (Asteraceae) from the Iberian Peninsula and the Balearic Islands. Bot J Linn Soc 153:311–320CrossRefGoogle Scholar
  10. Chrtek J (1994) Chromosome numbers in selected Hieracium species in the Krkonoše Mts (the West Sudeten). Folia Geobot Phytotax 29:91–100CrossRefGoogle Scholar
  11. Chrtek J Jr (1997) Taxonomy of the Hieracium alpinum group in the Sudeten Mts., the West and the Ukrainian East Carpathians. Folia Geobot Phytotax 32:69–97CrossRefGoogle Scholar
  12. Chrtek J, Plačková I (2005) Genetic variation in Hieracium alpinum (Asteraceae) in the Krkonoše Mts (West Sudeten Mts, Czech Republic). Biologia (Bratislava) 60:387–391Google Scholar
  13. Chrtek J Jr, Mráz P, Severa M (2004) Chromosome numbers in selected species of Hieracium s.str. (Hieracium subgen. Hieracium) in the Western Carpathians. Preslia 76:119–139Google Scholar
  14. Chrtek J Jr, Mráz P, Sennikov AN (2006) Hieracium × grofae—a rediscovered diploid hybrid from the Ukrainian Carpathians. Biologia (Bratislava) 61:365–373CrossRefGoogle Scholar
  15. Chrtek J, Mráz P, Zahradníček J, Mateo G, Szeląg Z (2007) Chromosome numbers and DNA-ploidy levels of selected species of Hieracium s.str. (Asteraceae). Folia Geobot 42:411–430CrossRefGoogle Scholar
  16. De Kovel CGF, De Jong G (2001) The effect of intra-specific competition on seedlings of sexual and apomictic Taraxacum officinale. Oikos 95:25–30CrossRefGoogle Scholar
  17. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106PubMedCrossRefGoogle Scholar
  18. Engelskjøn T, Knaben G (1971) Chromosome numbers of Scandinavian arctic-alpine plants species III. Acta Boreal A 28:1–30Google Scholar
  19. Gadella TWJ, Kliphuis E (1971) [Report on H. alpinum]. In: Löve Á (Ed) IOPB Chromosome number reports, Taxon 20:158Google Scholar
  20. Gentcheff G, Gustafsson Å (1940) The balance system of meiosis in Hieracium. Hereditas 26:209–248Google Scholar
  21. Gottschlich G (1987) Hieracium L. In: Wagenitz G (Ed) Hegi Illustrierte Flora von Mitteleuropa 6/2, edn 2. P. Parey, Berlin et Hamburg, 1182–1351Google Scholar
  22. Gustafsson Å (1946) Apomixis in higher plants. Part I. The mechanism of apomixis. Acta Univ Lund 42:1–67Google Scholar
  23. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global and land areas. Int J Clim 25:1965–1978CrossRefGoogle Scholar
  24. Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–535PubMedGoogle Scholar
  25. Huber W, Baltisberger M (1992) IOPB chromosome data 4. Newsl IOPB 18(19):6–8Google Scholar
  26. Jorgensen CA et al (1958) The flowering plants of Greenland. A taxonomical and cytological survey. Dansk Vidensk Selsk Biol Skr 9:1–172Google Scholar
  27. Knight CA, Beaulieu JM (2008) Genome size scaling through phenotype space. Ann Bot 101:759–766PubMedCrossRefGoogle Scholar
  28. Kovalčiková K (2004) Veľkosť peľu v blízko príbuzných rodoch Hieracium, Pilosella a Stenotheca (Asteraceae) [Pollen size in closely related genera Hieracium, Pilosella and Stenotheca (Asteraceae)]. Master thesis, Institute of Biology and Ecology, P.J. Šafárik University, KošiceGoogle Scholar
  29. Lavrenko AN, Serditov NP, Ulle ZG (1988) Chromosome numbers in some species of Asparagaceae, Asteraceae and Ranunculaceae from the North Urals (Komi ASSR). Bot Zhurn 73:605–607Google Scholar
  30. Lavrenko AN, Serditov NP, Ulle ZG (1989) Chromosome numbers in some species of flowering plants of the Urals (the Komi Autonomous Soviet Socialist Republic). Bot Zhurn 74:1059–1062Google Scholar
  31. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  32. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 51:123–132Google Scholar
  33. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, CambridgeGoogle Scholar
  34. Meirmans PG, den Nijs JCM, van Tienderen PH (2006) Male sterility in triploid dandelions: asexual females vs asexual hermaphrodites. Heredity 96:45–52PubMedGoogle Scholar
  35. Merxmüller H (1975) Diploide Hieracien. Anal Inst Bot Cavanilles 32:189–196Google Scholar
  36. Měsíček J, Jarolímová V (1992) List of chromosome numbers of the Czech vascular plants. Academia, PrahaGoogle Scholar
  37. Mogie M (1992) The evolution of asexual reproduction in plants. Chapman and Hall, LondonGoogle Scholar
  38. Mráz P (2001) Chromosome numbers in selected species of Hieracium sect. Alpina from Central and Eastern Europe. Folia Geobot 36:321–332CrossRefGoogle Scholar
  39. Mráz P (2002) Contribution to the knowledge of the Hieracium rohacsense group in the Carpathians. Thaiszia J Bot 12:109–135Google Scholar
  40. Mráz P (2003) Mentor effects in the genus Hieracium s. str. (Compositae, Lactuceae). Folia Geobot 38:345–350CrossRefGoogle Scholar
  41. Mráz P, Szeląg Z (2004) Chromosome numbers and reproductive systems in selected species of Hieracium and Pilosella (Asteraceae) from Romania. Ann Bot Fenn 41:405–414Google Scholar
  42. Mráz P, Kovalčíková K, Marhold K (2002) Pollen shapes and size in Hieracium and related genera. In: Gutterman W (Ed) Contribution abstracts (lectures and posters) from 6th Hieracium Workshop, Hirschegg/Kleinwalsertal (Österreich), Institut für Botanik der Universität Wien, Wien, 27Google Scholar
  43. Mráz P, Chrtek J, Fehrer J, Plačková I (2005) Rare recent natural hybridization in the genus Hieracium s.str.—evidence from morphology, allozymes and chloroplast DNA. Plant Syst Evol 255:177–192CrossRefGoogle Scholar
  44. Murín A (1960) Substitution of cellophane for glass covers to facilitate preparation of permanent squashes and smears. Stain Technol 35:351–353PubMedGoogle Scholar
  45. Murín A, Májovský J (1992) Karyological study of the Slovak Flora XXV. Acta Fac Rer Nat Univ Comenianae Bot 39:53–57Google Scholar
  46. Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788PubMedCrossRefGoogle Scholar
  47. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z (Eds) Methods in cell biology 33:105–110Google Scholar
  48. Ozenda P (1985) La végétation de la chaîne alpine dans l’espace montagnard européen. Masson, ParisGoogle Scholar
  49. Pawłowski B (1970) Remarques sur l’endémisme dans la flore des Alpes et des Carpates. Vegetatio 21:181–243Google Scholar
  50. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  51. Rich TCG, McDonnell EJ, Lledó MD (2008) Conservation of Britain’s biodiversity: the case of Hieracium cyathis (Asteraceae) an its relation to other apomictic taxa. Bot J Linn Soc 156:669–680CrossRefGoogle Scholar
  52. Rosenberg O (1927) Die semiheterotypische Teilung und ihre Bedeutung für die Entstehung verdoppelter Chromosomenzahhlen. Hereditas (Lund) 8:305–338CrossRefGoogle Scholar
  53. R Development Core Team (ed) (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  54. Schmuths H, Meister A, Horres R, Bachman K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321PubMedCrossRefGoogle Scholar
  55. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountains plants in the European Alps. Mol Ecol 14:3547–3555PubMedCrossRefGoogle Scholar
  56. Schuhwerk F (1996) Published chromosome counts in Hieracium. http://www.botanik.biologie.uni-muenchen.de/botsamml/projects/chrzlit.html
  57. Schuhwerk F, Lippert W (1999) Chromosomenzahlen von Hieracium (Compositae, Lactuceae) Teil 3. Sendtnera 6:197–214Google Scholar
  58. Skalińska M (1959) [Report on H. alpinum]. In: Skalińska M, Czapik R, Piotrowicz M et al. (eds) Further studies in chromosome numbers of Polish Angiosperms (Dicotyledons). Acta Soc Bot Pol 28:523Google Scholar
  59. Skawińska R (1963) Apomixis in Hieracium alpinum L. Acta Biol Cracov 5(1962):7–14Google Scholar
  60. Slade K, Rich TCG (2007) Pollen studies in British Hieracium sect Alpina (Asteraceae). Watsonia 26:443–450Google Scholar
  61. Sokolovskaya AP, Strelkova OS (1960) Geograficheskoe rasprostranenie poliploidnykh vidov v Evraziatskoï Arktike [Geographical distribution of polyploid species of plants in Eurasiatic Arctis]. Bot Zhurn 45:369–381Google Scholar
  62. Stace CA, Gornall RJ, Squirrell J, Shi Y (1995) Chromosome numbers in Hieracium L. section Alpina (Fries) F. N. Williams. Watsonia 20:367–377Google Scholar
  63. Štorchová H, Chrtek J Jr, Bartish IV, Tetera M, Kirschner J, Štěpánek J (2002) Genetic variation in agamospermous taxa of Hieracium sect Alpina (Compositae) in the Tatry Mts. (Slovakia). Plant Syst Evol 235:1–17CrossRefGoogle Scholar
  64. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium subgenus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335PubMedCrossRefGoogle Scholar
  65. Szeląg Z, Jankun A (1997) Tetraploid Hieracium alpinum in the Polish Tatra Mts. Fragm Florist Geobot 42:190–192Google Scholar
  66. Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830PubMedCrossRefGoogle Scholar
  67. Uhríková A, Murín A (1970) [Report on H. alpinum]. In: Májovský J et al., Index of chromosome numbers of Slovakian flora (Part 2). Acta Fac Rer Nat Univ Comenianae, Bot 18:53Google Scholar
  68. Urbanska K (1991) Pollen and male function in agamospermous plants. Pol Bot Stud 2:71–84Google Scholar
  69. Vandel A (1928) La parthénogenese geographique. Contribution à l’étude biologique et cytologique de la parthénogenese naturelle. Bull Biol Fr Belg 62:164–182Google Scholar
  70. Vladimirov V (2000) Diploid species of the genus Hieracium s.l. in Bulgaria. Abh Ber Naturkundemus Görlitz 72, Suppl 16Google Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Patrik Mráz
    • 1
    • 2
  • Jindřich Chrtek
    • 3
    • 4
  • Barbora Šingliarová
    • 5
  1. 1.Laboratoire d’Ecologie Alpine, UMR UJF-CNRS 5553Université Joseph FourierGrenoble Cedex 9France
  2. 2.Department of Biology, Unit of Ecology and EvolutionUniversity of FribourgFribourgSwitzerland
  3. 3.Institute of Botany, Academy of Sciences of the Czech RepublicPrůhoniceCzech Republic
  4. 4.Department of Botany, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  5. 5.Institute of Botany, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations