Skip to main content
Log in

Source Localization using TDOA Based on Improved Snake Optimizer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In passive localization, the time-difference-of-arrival (TDOA) measurement model is commonly used for source location estimation. Methods for TDOA-based estimation can be categorized into two main groups: closed-form algebraic solutions and iterative approaches. Algebraic solutions circumvent convergence issues and achieve global optima, but are usually sensitive to TDOA measurement inaccuracies. Iterative methods optimize the objective function through multiple iterations, including deterministic iterative methods that require an iterative initial value and stochastic optimization methods reliant on optimization algorithms. In this paper, a stochastic optimization algorithm named snake optimization (SO) is used to solve the TDOA localization problem and improved to meet the localization requirements. Initially, a chaotic system is utilized to generate three random sequences to establish the initial snake population. The search strategy in the exploration phase is subsequently improved to enhance the early-stage convergence speed of the algorithm. Moreover, an adaptive evolutionary stage threshold is introduced to adaptively handle various noise conditions and source locations in TDOA localization scenarios. Lastly, a snake oviposition strategy, inspired by genetic principles, is proposed. Simulations show that the improved SO algorithm can converge to the source position quickly and stably and has better positioning accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Beck, P. Stoica, J. Li, Exact and approximate solutions of source localization problems. IEEE Trans. Signal Process. 56(5), 1770–1778 (2008). https://doi.org/10.1109/TSP.2007.909342

    Article  MathSciNet  Google Scholar 

  2. L.A. Caceres Najarro, I. Song, K. Kim, Differential evolution with opposition and redirection for source localization using rss measurements in wireless sensor networks. IEEE Tran. Autom. Sci. Eng. 17(4), 1736–1747 (2020). https://doi.org/10.1109/TASE.2020.2975287

    Article  Google Scholar 

  3. B.K. Chalise, Y.D. Zhang, M.G. Amin, B. Himed, Target localization in a multi-static passive radar system through convex optimization. Signal Process. 102, 207–215 (2014). https://doi.org/10.1016/j.sigpro.2014.02.023

    Article  Google Scholar 

  4. Y.T. Chan, K.C. Ho, A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994). https://doi.org/10.1109/78.301830

    Article  Google Scholar 

  5. Y.T. Chan, H.Y.C. Hang, P. Ching, Exact and approximate maximum likelihood localization algorithms. IEEE Trans. Veh. Technol. 55(1), 10–16 (2006). https://doi.org/10.1109/TVT.2005.861162

    Article  Google Scholar 

  6. T. Chen, M. Wang, X. Huang, Q. Xie, TDOA-AOA localization based on improved Salp swarm algorithm, in 2018 14th IEEE International Conference on Signal Processing (ICSP) (2018), pp. 108–112. https://doi.org/10.1109/ICSP.2018.8652322

  7. G.R. Chen, T. Ueta, Yet another chaotic attractor. Int J Bifurc Chaos 9, 1465–1466 (1999). https://doi.org/10.1142/S0218127499001024

    Article  MathSciNet  Google Scholar 

  8. A. Gabbrielli, J. Bordoy, W.X. Xiong et al., RAILS: 3-D real-time angle of arrival ultrasonic indoor localization system. IEEE Trans. Instrum. Meas. 72, 1–15 (2023). https://doi.org/10.1109/TIM.2022.3222485

    Article  Google Scholar 

  9. Z. Han, C.S. Leung, H.C. So, A.G. Constantinides, Augmented Lagrange programming neural network for localization using time-difference-of-arrival measurements. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3879–3884 (2018). https://doi.org/10.1109/TNNLS.2017.2731325

    Article  MathSciNet  Google Scholar 

  10. F.A. Hashim, A.G. Hussien, Snake optimizer: a novel meta-heuristic optimization algorithm. Knowl Based Syst. 242, 108320 (2022). https://doi.org/10.1016/j.knosys.2022.108320

    Article  Google Scholar 

  11. O. Jean, A.J. Weiss, Geolocation by direction of arrival using arrays with unknown orientation. IEEE Trans. Signal Process. 62(12), 3135–3142 (2014). https://doi.org/10.1109/TSP.2014.2321109

    Article  MathSciNet  Google Scholar 

  12. Y.X. Li, G.R. Chen, W.K.S. Tang, Controlling a unified chaotic system to hyperchaotic. IEEE Trans. Circuits Syst. II Express Br. 52(4), 204–207 (2005). https://doi.org/10.1109/TCSII.2004.842413

    Article  Google Scholar 

  13. J. Liang, Y. Chen, H.C. So, Y. Jing, Circular/hyperbolic/elliptic localization via Euclidean norm elimination. Signal Process. 148, 102–113 (2018). https://doi.org/10.1016/j.sigpro.2018.02.006

    Article  Google Scholar 

  14. L. Lin, H.C. So, F.K.W. Chan, Y.T. Chan, K.C. Ho, A new constrained weighted least squares algorithm for TDOA-based localization. Signal Process. 93(11), 2872–2878 (2013). https://doi.org/10.1016/j.sigpro.2013.04.004

    Article  Google Scholar 

  15. Y. Liu, F. Guo, L. Yang, W. Jiang, An improved algebraic solution for TDOA localization with sensor position errors. IEEE Commun. Lett. 19(12), 2218–2221 (2015). https://doi.org/10.1109/LCOMM.2015.2486769

    Article  Google Scholar 

  16. Z. Liu, R. Wang, Y. Zhao, Noise-resistant estimation algorithm for TDOA, FDOA and differential doppler rate in passive sensing. Circuits Syst. Signal Process. 39, 4155–4173 (2020). https://doi.org/10.1007/s00034-020-01364-3

    Article  Google Scholar 

  17. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963). https://doi.org/10.1007/978-0-387-21830-4_2

    Article  MathSciNet  Google Scholar 

  18. X.N. Lu, K.C. Ho, Taylor-series technique for moving source localization in the presence of sensor location errors, in 2006 IEEE International Symposium on Circuits and Systems (2007), p. 4. https://doi.org/10.1109/ISCAS.2006.1692775

  19. X. Ma, T. Ballal, H. Chen, O. Aldayel, T.Y. Al-Naffouri, A maximum-likelihood TDOA localization algorithm using difference-of-convex programming. IEEE Signal Process. Lett. 28, 309–313 (2021). https://doi.org/10.1109/LSP.2021.3051836

    Article  Google Scholar 

  20. A. Noroozi, A.H. Oveis, S.M. Hosseini, M.A. Sebt, Improved algebraic solution for source localization from TDOA and FDOA measurements. IEEE Wirel. Commun. Lett. 7(3), 352–355 (2018). https://doi.org/10.1109/LWC.2017.2777995

    Article  Google Scholar 

  21. K.C. Pine, S. Pine, M. Cheney, The geometry of far-field passive source localization With TDOA and FDOA. IEEE Trans. Aerosp. Electron. Syst. 57(6), 3782–3790 (2021). https://doi.org/10.1109/TAES.2021.3087804

    Article  Google Scholar 

  22. X.M. Qu, L.H. Xie, W.R. Tan, Iterative constrained weighted least squares source localization using TDOA and FDOA measurements. IEEE Trans. Signal Process. 65(15), 3990–4003 (2017). https://doi.org/10.1109/TSP.2017.2703667

    Article  MathSciNet  Google Scholar 

  23. F. Quo, K.C. Ho, A quadratic constraint solution method for TDOA and FDOA localization, in 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (2011), pp. 2588–2591. https://doi.org/10.1109/ICASSP.2011.5947014

  24. J. Smith, J. Abel, Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust, Speech, Signal Process. 35(12), 1661–1669 (1987). https://doi.org/10.1109/TASSP.1987.1165089

    Article  Google Scholar 

  25. F. Solis, R. Wets, Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30 (1981). https://doi.org/10.1287/moor.6.1.19

    Article  MathSciNet  Google Scholar 

  26. L. Sun, Z.Q. Huang, W.M. Fu, The research of image encryption algorithm based on hyper-chaotic chen system integration with time delay. Sci. Tech. Eng. 13, 10523–10530 (2013). https://api.semanticscholar.org/CorpusID:123601773

  27. J.M. Tang, X. Zhou, W. Zhang, C.Y. Wang, H.B. Wang, Multipoint location of TDOA based on improved genetic ant colony algorithm. Commun. Technol. 51(7), 1575–1584 (2018)

    Google Scholar 

  28. Z.C. Tian, C.F. Liu, Passive Locating Technology (National Defence Industry Press, Beijing, 2015), pp.264–265

    Google Scholar 

  29. H.W. Wei, R. Peng, Q. Wan, Z.X. Chen, S.F. Ye, Multidimensional scaling analysis for passive moving target localization with TDOA and FDOA measurements. IEEE Trans. Signal Process. 58(3), 1677–1688 (2010). https://doi.org/10.1109/TSP.2009.2037666

    Article  MathSciNet  Google Scholar 

  30. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  31. W.X. Xiong, H.C. So, Outlier-robust passive elliptic target localization. IEEE Geosci. Remote Sens. Lett. 20, 1–5 (2023). https://doi.org/10.1109/LGRS.2023.3270929

    Article  Google Scholar 

  32. W.X. Xiong, S. Christian, H.C. So et al., TDOA-based localization with NLOS mitigation via robust model transformation and neurodynamic optimization. Signal Process. 178, 107774 (2021). https://doi.org/10.1016/j.sigpro.2020.107774

    Article  Google Scholar 

  33. W.X. Xiong, C. Schindelhauer, H.C. So, Globally optimized TDOA high-frequency source localization based on quasi-parabolic ionosphere modeling and collaborative gradient projection. IEEE Trans. Aerosp. Electron. Syst. 59(1), 580–590 (2023). https://doi.org/10.1109/TAES.2022.3185971

    Article  Google Scholar 

  34. E. Xu, Z. Ding, S. Dasgupta, Source localization in wireless sensor networks from signal time-of-arrival measurements. IEEE Trans. Signal Process. 59(6), 2887–2897 (2011). https://doi.org/10.1109/TSP.2011.2116012

    Article  MathSciNet  Google Scholar 

  35. Z. Xu, H. Li, K. Yang, L.P. Lin, A robust constrained total least squares algorithm for three-dimensional target localization with hybrid TDOA-AOA measurements. Circuits Syst Signal Process. 42, 3412–3436 (2023). https://doi.org/10.1007/s00034-022-02270-6

    Article  Google Scholar 

  36. K. Yang, G. Wang, Z. Luo, Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Trans. Signal Process. 57(7), 2775–2784 (2009). https://doi.org/10.1109/TSP.2009.2016891

    Article  MathSciNet  Google Scholar 

  37. G.H. Zhu, D.Z. Feng, Y. Zhou, H.X. Zhao, A linear-correction based on time difference of arrival localization algorithm. J. Electron. Inf. Technol. 37, 85–90 (2015). https://doi.org/10.11999/JEIT140313

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Major Research & Development Project of China (2018YFE0206500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongpeng Wang.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Y., Wang, Y. Source Localization using TDOA Based on Improved Snake Optimizer. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02703-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02703-4

Keywords

Navigation