Skip to main content
Log in

A Novel R-Peak Detection Model and SE-ResNet-Based PVC Recognition for 12-Lead ECGs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The real-time and accurate recognition of premature ventricular contractions (PVC) in dynamic 12-lead ECGs poses a clinical challenge due to noise and variability. The accurate location of the QRS complex is crucial for efficient PVC heartbeat recognition. This study proposes a robust PVC recognition approach, combining a self-adaptive multi-detector fusion model for R-peak detection and a multi-parameter squeeze–excitation ResNet-based heartbeat classifier. The detection results of multiple detectors are weighted with coefficients, and decision fusion is performed through adaptive threshold comparison. Tested on the INCART arrhythmia and 2018 China Physiological Signal Challenge databases, the R-peak detection results exhibit that our proposed fusion model outperforms majority, mean, and median voting strategies, with sensitivity improvements of 0.33%, 0.78%, and 0.41% for INCART dataset and 0.28%, 0.61%, and 0.34% for 2018 Physiological Signal dataset. In addition, our model is also superior to the best single annotator used in this paper. Evaluation of the multi-parameter SE-ResNet classifier reveals increased F1 scores of PVC heartbeat recognition by 4.33%, 3.44%, 5.04%, 12.41%, and 1.56% using INCART dataset compared to CNN, Inception, MLP, AlexNet, and LSTM, respectively, and 2.51%, 1.8%, 2.32%, 12.54%, and 2.27% using 2018 Physiological Signal dataset. Finally, the Se and Sp metrics also show improvement on the two datasets using the SE-ResNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The datasets discussed in the manuscript are publicly available for research purposes.

References

  1. V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, Ecg beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–202 (1999)

    Article  Google Scholar 

  2. R. Allami, Premature ventricular contraction analysis for real-time patient monitoring. Biomed. Signal Process. Control 47, 358–365 (2019)

    Article  Google Scholar 

  3. M.M. Al Rahhal, N. Al Ajlan, Y. Bazi, H. Al Hichri, T. Rabczuk, Automatic premature ventricular contractions detection for multi-lead electrocardiogram signal. In 2018 IEEE International Conference on Electro/Information Technology (EIT). pp. 0169–0173 (2018)

  4. A. Biran, A. Jeremic, Automatic QRS detection and segmentation using short time fourier transform and feature fusion. In 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–4 (2020)

  5. C. Brito, A. Machado, A.L. Sousa, Electrocardiogram beat-classification based on a resnet network. In MedInfo pp. 55–59 (2019)

  6. Z. Cai, T. Wang, Y. Shen, Y. Xing, R. Yan, J. Li, C. Liu, Robust pvc identification by fusing expert system and deep learning. Biosensors 12(4), 185 (2022)

    Article  Google Scholar 

  7. P. Charlier, M. Cabon, C. Herman, F. Benouna, R. Logier, V. Houfflin-Debarge, M. Jeanne, J. De Jonckheere, Comparison of multiple cardiac signal acquisition technologies for heart rate variability analysis. J. Clin. Monit. Comput. 34, 743–752 (2020)

    Article  Google Scholar 

  8. J. Di, J. Li, C Liu, A bayesian fusion model for heart rate annotations. In 2020 International Conference on Sensing, Measurement & Data Analytics in the Era of Artificial Intelligence (ICSMD), pp. 307–312 (2020)

  9. M. Elgendi, Fast qrs detection with an optimized knowledge-based method: Evaluation on 11 standard ecg databases. PLoS ONE 8(9), 73557 (2013)

    Article  Google Scholar 

  10. A. Habib, C. Karmakar, J. Yearwood, Impact of ecg dataset diversity on generalization of cnn model for detecting qrs complex. IEEE Access. 7, 93275–93285 (2019)

    Article  Google Scholar 

  11. J. Hayano, E. Yuda, Assessment of autonomic function by long-term heart rate variability: beyond the classical framework of lf and hf measurements. J. Physiol. Anthropol. 40(1), 21 (2021)

    Article  Google Scholar 

  12. M.B. Hossain, S.K. Bashar, A.J. Walkey, D.D. McManus, K.H. Chon, An accurate QRS complex and p wave detection in ECG signals using complete ensemble empirical mode decomposition with adaptive noise approach. IEEE Access. 7, 128869–128880 (2019)

    Article  Google Scholar 

  13. A. Ivora, I. Viscor, P. Nejedly, R. Smisek, Z. Koscova, V. Bulkova, J. Halamek, P. Jurak, F. Plesinger, Qrs detection and classification in holter ecg data in one inference step. Sci. Rep. 12(1), 12641 (2022)

    Article  Google Scholar 

  14. A. John, S.J. Redmond, B. Cardiff, D. John, A multimodal data fusion technique for heartbeat detection in wearable IoT sensors. IEEE Internet Things J. 9(3), 2071–2082 (2021)

    Article  Google Scholar 

  15. V. Kalidas, L.S. Tamil, Detection of premature ventricular complexes using semisupervised autoencoders and random forests. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). pp. 337–340 (2020)

  16. Y.G. Kim, Y.Y. Choi, K.-D. Han, K.J. Min, H.Y. Choi, J. Shim, J.-I. Choi, Y.-H. Kim, Premature ventricular contraction increases the risk of heart failure and ventricular tachyarrhythmia. Sci. Rep. 11(1), 12698 (2021)

    Article  Google Scholar 

  17. P.M. Kwon, S. Lawrence, B.R. Mueller, J.F. Thayer, E.K. Benn, J. RobinsonPapp, Interpreting resting heart rate variability in complex populations: the role of autonomic reflexes and comorbidities. Clin. Auton. Res. 32(3), 175–184 (2022)

    Article  Google Scholar 

  18. C.A. Ledezma, M. Altuve, Optimal data fusion for the improvement of qrs complex detection in multi-channel ecg recordings. Med. Biol. Eng. Compu. 57, 1673–1681 (2019)

    Article  Google Scholar 

  19. P. Li, C. Liu, X. Wang, D. Zheng, Y. Li, C. Liu, A low-complexity dataadaptive approach for premature ventricular contraction recognition. SIViP 8, 111–120 (2014)

    Article  Google Scholar 

  20. Y. Li, Z. Zhang, F. Zhou, Y. Xing, J. Li, C. Liu, Multi-label classification of arrhythmia for long-term electrocardiogram signals with feature learning. IEEE Trans. Instrum. Meas. 70, 1–11 (2021)

    Google Scholar 

  21. Z. Li, D. Zhou, L. Wan, J. Li, W. Mou, Heartbeat classification using deep residual convolutional neural network from 2-lead electrocardiogram. J. Electrocardiol. 58, 105–112 (2020)

    Article  Google Scholar 

  22. F. Liu, C. Liu, X. Jiang, L. Zhao, J. Li, C. Song, S. Wei, A decision-making fusion method for accurately locating QRS complexes from the multiple QRS detectors. In World Congress on Medical Physics and Biomedical Engineering 2018: June 3–8, 2018, Prague, Czech Republic (Vol. 2), pp. 351–355 (2019)

  23. F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He et al., An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inf. 8(7), 1368–1373 (2018)

    Article  Google Scholar 

  24. A.S. Malek, A. Elnahrawy, H. Anwar, M. Naeem, Automated detection of premature ventricular contraction in ecg signals using enhanced template matching algorithm. Biomed. Phys. Eng. Express. 6(1), 015024 (2020)

    Article  Google Scholar 

  25. J. Malik, E.Z. Soliman, H.-T. Wu, An adaptive qrs detection algorithm for ultra-long-term ecg recordings. J. Electrocardiol. 60, 165–171 (2020)

    Article  Google Scholar 

  26. M.S. Manikandan, K. Soman, A novel method for detecting r-peaks in electrocardiogram (ecg) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012)

    Article  Google Scholar 

  27. M.H. Mazidi, M. Eshghi, M.R. Raoufy, Premature ventricular contraction (pvc) detection system based on tunable q-factor wavelet transform. J. Biomed. Phys. Eng. 12(1), 61 (2022)

    Article  Google Scholar 

  28. S. Modak, L.Y. Taha, E. Abdel-Raheem, A novel method of qrs detection using time and amplitude thresholds with statistical false peak elimination. IEEE Access. 9, 46079–46092 (2021)

    Article  Google Scholar 

  29. J.B.B. Mougoufan, J.A.E. Fouda, M. Tchuente, W. Koepf, Three-class ecg beat classification by ordinal entropies. Biomed. Signal Process. Control 67, 102506 (2021)

    Article  Google Scholar 

  30. J. Pan, W.J. Tompkins, A real-time qrs detection algorithm. IEEE Trans. Biomed. Eng. 3, 230–236 (1985)

    Article  Google Scholar 

  31. G. Petmezas, K. Haris, L. Stefanopoulos, V. Kilintzis, A. Tzavelis, J.A. Rogers, A.K. Katsaggelos, N. Maglaveras, Automated atrial fibrillation detection using a hybrid cnn-lstm network on imbalanced ecg datasets. Biomed. Signal Process. Control 63, 102194 (2021)

    Article  Google Scholar 

  32. P. Phukpattaranont, Qrs detection algorithm based on the quadratic filter. Expert Syst. Appl. 42(11), 4867–4877 (2015)

    Article  Google Scholar 

  33. A. Ramakrishnan, A. Prathosh, T. Ananthapadmanabha, Threshold-independent qrs detection using the dynamic plosion index. IEEE Signal Process. Lett. 21(5), 554–558 (2014)

    Article  Google Scholar 

  34. R. Rodríguez-Jorge, I. De León-Damas, J. Bila, J. Škvor, Internet of things assisted architecture for QRS complex detection in real time. Internet Things 14, 100395 (2021)

    Article  Google Scholar 

  35. S. Saadatnejad, M. Oveisi, M. Hashemi, Lstm-based ecg classification for continuous monitoring on personal wearable devices. IEEE J. Biomed. Health Inform. 24(2), 515–523 (2019)

    Article  Google Scholar 

  36. A. Sharma, S. Patidar, A. Upadhyay, U.R. Acharya, Accurate tunableq wavelet transform based method for qrs complex detection. Comput. Electr. Eng. 75, 101–111 (2019)

    Article  Google Scholar 

  37. R. Thirrunavukkarasu, T. Meeradevi, A. Ravi, D. Ganesan, G.P. Vadivel, Detection r peak in electrocardiogram signal using daubechies wavelet transform and shannon’s energy envelope. 2019 5th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 1044–1048 (2019)

  38. H. Ullah, M.B.B. Heyat, F. Akhtar, A.Y. Muaad, C.C. Ukwuoma, M. Bilal, M.H. Miraz, M.A.S. Bhuiyan, K. Wu, R. Damasevicius et al., An automatic premature ventricular contraction recognition system based on imbalanced dataset and pre-trained residual network using transfer learning on ecg signal. Diagnostics. 13(1), 87 (2022)

    Article  Google Scholar 

  39. J. Wang, Automated detection of premature ventricular contraction based on the improved gated recurrent unit network. Comput. Methods Progr. Biomed. 208, 106284 (2021)

    Article  Google Scholar 

  40. S. Yazdani, J.-M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digit. Signal Process. 56, 100–109 (2016)

    Article  MathSciNet  Google Scholar 

  41. J. Yu, X. Wang, X. Chen, J. Guo, Automatic premature ventricular contraction detection using deep metric learning and KNN. Biosensors 11(3), 69 (2021)

    Article  Google Scholar 

  42. K. Zhao, Y. Li, G. Wang, Y. Pu, Y. Lian, A robust qrs detection and accurate r-peak identification algorithm for wearable ECG sensors. Sci. China Inf. Sci. 64(8), 182401 (2021)

    Article  MathSciNet  Google Scholar 

  43. T. Zhu, A.E. Johnson, J. Behar, G.D. Clifford, Crowd-sourced annotation of ecg signals using contextual information. Ann. Biomed. Eng. 42, 871–884 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by the National Natural Science Foundation of China (62106233) and the Key Science and Technology Program of Henan Province (232102211003, 232102210017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Sun, T., Nan, J. et al. A Novel R-Peak Detection Model and SE-ResNet-Based PVC Recognition for 12-Lead ECGs. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02662-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02662-w

Keywords

Navigation