Skip to main content
Log in

Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music Using Discrete Wavelet Transform

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, a new multi-input deep convolutional neural networks (deep-CNNs) model architecture is addressed for the recognition of predominant instruments in polyphonic music using discrete wavelet transform (DWT). The proposed deep-CNNs model employs a fusion of Mel-spectrogram and Mel-frequency cepstral coefficient (MFCC) features as its first input and a concatenation of statistical features extracted from decomposed signals obtained through DWT as its second input. Particle swarm optimization (PSO), a feature selection algorithm, is employed to minimize the feature dimensionality by excluding the irrelevant features. The proposed model is experimentally tested on the IRMAS dataset using fixed-length single-labeled train data for model training and variable-length multi-labeled test data for model evaluation. The proposed model is evaluated using several DWT feature dimensions, and a feature dimension of 250 yields the best outcomes. The model performance is assessed by averaging the precision, recall, and F1 measures on a micro- and macro-level. For a set of optimal model hyperparameter values, our proposed model can reach micro and macro F1 measures of 0.695 and 0.631, which are 12.28% and 23.0% greater as compared to the benchmark Han et al. (IEEE/ACM Trans Audio Speech Lang Process 25(1):208–221, 2016. https://doi.org/10.1109/taslp.2016.2632307) CNN model, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. al-Qerem, F. Kharbat, S. Nashwan, S. Ashraf, K. Blaou, General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. Int. J. Distrib. Sens. Netw. 16, 1–21 (2020). https://doi.org/10.1177/1550147720911009

    Article  Google Scholar 

  2. K. Alsharabi, Y.B. Salamah, A.M. Abdurraqeeb, M. Aljalal, F.A. Alturki, EEG signal processing for Alzheimer’s disorders using discrete wavelet transform and machine learning approaches. IEEE Access 10, 89781–89797 (2022). https://doi.org/10.1109/access.2022.3198988

    Article  Google Scholar 

  3. J.J. Aucouturier, Sounds like teen spirit: Computational insights into the grounding of everyday musical terms, in Language, Evolution and the Brain, Book Chapter-2 (City University of Hong Kong Press, 2009), pp. 35–64

  4. E. Benetos, S. Dixon, D. Giannoulis, H. Kirchhoff, A. Klapuri, Automatic music transcription: challenges and future directions. J. Intell. Inf. Syst. 41(3), 407–434 (2013). https://doi.org/10.1007/s10844-013-0258-3

    Article  Google Scholar 

  5. J.J. Bosch, J. Janer, F. Fuhrmann, P. Herrera, A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals, in Proceedings, International Society for Music Information Retrieval Conference (ISMIR 2012) (2012), pp. 559–564. https://doi.org/10.5281/zenodo.1416075

  6. L. Debnath, J.-P. Antoine, Wavelet transforms and their applications. Phys. Today 56(4), 68–68 (2003). https://doi.org/10.1063/1.1580056

    Article  Google Scholar 

  7. J.D. Deng, C. Simmermacher, S. Cranefield, A study on feature analysis for musical instrument classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 38(2), 429–438 (2008). https://doi.org/10.1109/tsmcb.2007.913394

    Article  Google Scholar 

  8. Z. Duan, B. Pardo, L. Daudet, A novel Cepstral representation for timbre modeling of sound sources in polyphonic mixtures, in Proceedings, IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) (2014), pp. 7495–7499. https://doi.org/10.1109/icassp.2014.6855057

  9. R.C. Eberhart, Y. Shi, Particle swarm optimization: development, applications and resources, in Proceedings, IEEE Conference on Evolutionary Computation, (IEEE Cat. No.01TH8546), ICEC, vol. 1 (2001), pp. 81–86. https://doi.org/10.1109/cec.2001.934374

  10. M.R. Every, Discriminating between pitched sources in music audio. IEEE Trans. Audio Speech Lang. Process. 16(2), 267–277 (2008). https://doi.org/10.1109/tasl.2007.908128

    Article  Google Scholar 

  11. F. Fuhrmann, P. Herrera, Polyphonic instrument recognition for exploring semantic similarities in music, in Proceedings, 13th International Conference on Digital Audio Effects (DAFx-10) (2010), pp. 1–8. http://mtg.upf.edu/files/publications/ffuhrmann_ dafx10_ final_0.pdf

  12. D. Ghosal, M.H. Kolekar, Music genre recognition using deep neural networks and transfer learning, in Proceedings, Interspeech (2018), pp. 2087–2091. https://doi.org/10.21437/interspeech.2018-2045

  13. D. Giannoulis, A. Klapuri, Musical instrument recognition in polyphonic audio using missing feature approach. IEEE Trans. Audio Speech Lang. Process. 21(9), 1805–1817 (2013). https://doi.org/10.1109/tasl.2013.2248720

    Article  Google Scholar 

  14. X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in Proceedings, 13th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9, Chia Laguna Resort, Sardinia, Italy (2010), pp. 249–256. https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

  15. M. Goto, H. Hashiguchi, T. Nishimura, R. Oka, RWC music database: popular, classical, and jazz music database, in Proceedings, 3rd International Conference on Music Information Retrieval (ISMIR) (2002), pp. 287–288. https://www.researchgate.net/publication/220723431

  16. S. Gururani, C. Summers, A. Lerch, Instrument activity detection in polyphonic music using deep neural networks, in Proceedings, International Society for Music Information Retrieval Conference, Paris, France (2018), pp. 569–576. https://www.researchgate.net/publication/ 332621784

  17. Y. Han, J. Kim, K. Lee, Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio. Speech Lang. Process. 25(1), 208–221 (2016). https://doi.org/10.1109/taslp.2016.2632307

    Article  Google Scholar 

  18. K.K. Hasan, U.K. Ngah, M.F.M. Salleh, Multilevel decomposition discrete wavelet transform for hardware image compression architectures applications, in Proceedings, IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia (2013), pp. 315–320. https://doi.org/10.1109/iccsce.2013.6719981

  19. T. Heittola, A. Klapuri, T. Virtanen, Musical instrument recognition in polyphonic audio using source-filter model for sound separation, in Proceedings, International Society for Music Information Retrieval Conference (ISMIR) (2009), pp. 327–332. https://www.researchgate.net/publication/220723588

  20. J. Huang, Y. Dong, J. Liu, C. Dong, H. Wang, Sports audio segmentation and classification, in Proceedings, International Conference on Network Infrastructure and Digital Content (IC-NIDC ?09) (IEEE, Beijing, China, 2009), pp. 379–383. https://doi.org/10.1109/icnidc.2009.5360872

  21. R.T. Irene, C. Borrelli, M. Zanoni, M. Buccoli, A. Sarti, Automatic playlist generation using convolutional neural networks and recurrent neural networks, in Proceedings, European Signal Processing Conference (EUSIPCO) (IEEE, 2019), pp. 1–5. https://doi.org/10.23919/eusipco.2019.8903002

  22. T. Kitahara, M. Goto, K. Komatani, T. Ogata, H.G. Okuno, Instrument identification in polyphonic music: feature weighting to minimize influence of sound overlaps. J. Appl. Signal Process. (EURASIP) 2007, 155–155 (2007). https://doi.org/10.1155/2007/51979

    Article  Google Scholar 

  23. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  ADS  CAS  PubMed  Google Scholar 

  24. C.R. Lekshmi, R. Rajeev, Multiple predominant instruments recognition in polyphonic music using spectro/modgd-gram fusion. Circuits Syst. Signal Process. 42(6), 3464–3484 (2023). https://doi.org/10.1007/s00034-022-02278-y

    Article  Google Scholar 

  25. P. Li, J. Qian, T. Wang, Automatic instrument recognition in polyphonic music using convolutional neural networks (2015), pp. 1–5. https://doi.org/10.48550/arXiv.1511.05520. arXiv:1511.05520

  26. P. Li, Z. Chen, L.T. Yang, Q. Zhang, M.J. Deen, Deep convolutional computation model for feature learning on big data in Internet of Things. IEEE Trans. Ind. Inf. 14(2), 790–798 (2018). https://doi.org/10.1109/tii.2017.2739340

    Article  Google Scholar 

  27. Y. Luo, N. Mesgarani, Conv-tasnet: surpassing ideal time-frequency magnitude masking for speech separation. IEEE/ACM Trans. Audio Speech Lang. Process. 27(8), 1256–1266 (2019). https://doi.org/10.1109/taslp.2019.2915167

    Article  PubMed  PubMed Central  Google Scholar 

  28. E. Magosso, M. Ursino, A. Zaniboni, E. Gardella, A wavelet-based energetic approach for the analysis of biomedical signals: application to the electroencephalogram and electro-oculogram. Appl. Math. Comput. 207(1), 42–62 (2009). https://doi.org/10.1016/j.amc.2007.10.069

    Article  MathSciNet  Google Scholar 

  29. B. McFee, C. Raffel, D. Liang, D.P.W. Ellis, M. McVicar, E. Battenberg, O. Nieto, Librosa: audio and music signal analysis in Python, in Proceedings, 14th Python in Science Conference (SCIPY 2015), vol. 8 (2015), pp. 18–25. https://doi.org/10.25080/majora-7b98e3ed-003

  30. V. Nair, G.E. Hinton, Rectified linear units improve restricted Boltzmann machines, in Proceedings, 27th International Conference on Machine Learning, Haifa, Israel (2010), pp. 807–814. https://www.cs.toronto.edu/~fritz/absps/reluICML.pdf

  31. T.-L. Nguyen, S. Kavuri, M. Lee, A multimodal convolutional neuro-fuzzy network for emotional understanding of movie clips. Neural Netw. 118, 208–219 (2019). https://doi.org/10.1016/j.neunet.2019.06.010

    Article  PubMed  Google Scholar 

  32. [Online]. Available: http://theremin.music.uiowa.edu/MIS.html

  33. F.J. Opolko, J. Wapnick, Mcgill University master samples. Montreal, QC, Canada: McGill University, Faculty of Music (1987). https://www.worldcat.org/title/mums-mcgill-university-master-samples/oclc/17946083

  34. J. Pons, O. Slizovskaia, R. Gong, E. Gomez, X. Serra, Timbre analysis of music audio signals with convolutional neural networks, in Proceedings, 25th European Signal Processing Conference (IEEE, 2017), pp. 2744–2748. https://doi.org/10.23919/eusipco.2017.8081710

  35. L. Prechelt, Early stopping—but when?, in Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, ed. by G.B. Orr, K.R. Muller (Springer, Berlin, 2012), pp.53–67. https://doi.org/10.1007/978-3-642-35289-8_5

    Chapter  Google Scholar 

  36. H. Purwins, B. Li, T. Virtanen, J. Schluter, S.-Y. Chang, T. Sainath, Deep learning for audio signal processing. IEEE J. Sel. Top. Signal process 13(2), 206–219 (2019). https://doi.org/10.1109/jstsp.2019.2908700

    Article  ADS  Google Scholar 

  37. L. Qiu, S. Li, Y. Sung, DBTMPE: deep bidirectional transformers-based masked predictive encoder approach for music genre classification. Mathematics 9(5), 1–17 (2021). https://doi.org/10.3390/math9050530

    Article  Google Scholar 

  38. L.R. Rabiner, R.W. Schafer, Theory and Applications of Digital Speech Processing (Prentice Hall Press, Hoboken, 2010)

    Google Scholar 

  39. L.C. Reghunath, R. Rajan, Transformer-based ensemble method for multiple predominant instruments recognition in polyphonic music. EURASIP J. Audio Speech Music Process. 2022(1), 1–14 (2022). https://doi.org/10.1186/s13636-022-00245-8

    Article  Google Scholar 

  40. A. Sano, W. Chen, D. Lopez-Martinez, S. Taylor, R.W. Picard, Multimodal ambulatory sleep detection using LSTM recurrent neural networks. IEEE J. Biomed. Health Inform. 23(4), 1607–1617 (2019). https://doi.org/10.1109/jbhi.2018.2867619

    Article  PubMed  Google Scholar 

  41. K. Schulze-Forster, K.G. Richard, L. Kelley, C.S.J. Doire, R. Badeau, Unsupervised music source separation using differentiable parametric source models. IEEE/ACM Trans. Audio Speech Lang. Process. 31, 1276–1289 (2023). https://doi.org/10.1109/taslp.2023.3252272

    Article  Google Scholar 

  42. M. Sharma, R.B. Pachori, U.R. Acharya, A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recogn. Lett. 94, 172–179 (2017). https://doi.org/10.1016/j.patrec.2017.03.023

    Article  ADS  Google Scholar 

  43. L. Shi, Y. Zhang, J. Zhang, Lung sound recognition method based on wavelet feature enhancement and time-frequency synchronous modeling. IEEE J. Biomed. Health Inform. 27(1), 308–318 (2023). https://doi.org/10.1109/jbhi.2022.3210996

    Article  PubMed  Google Scholar 

  44. D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, M.D. Plumbley, Detection and classification of acoustic scenes and events. IEEE Trans. Multimed. 17(10), 1733–1746 (2015). https://doi.org/10.1109/tmm.2015.2428998

    Article  Google Scholar 

  45. M. Sukhavasi, S. Adapa, Music theme recognition using CNN and self-attention (2019). https://doi.org/10.48550/arXiv.1911.07041, arXiv preprint arXiv:1911.07041

  46. T. Tuncer, S. Dogan, A. Subasi, Surface EMG signal classification using ternary pattern and discrete wavelet transform based feature extraction for hand movement recognition. Biomed. Signal Process. Control 58, 1–12 (2020). https://doi.org/10.1016/j.bspc.2020.101872

    Article  Google Scholar 

  47. T. Tuncer, S. Dogan, A. Subasi, EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed. Signal Process. Control 68, 1–11 (2021). https://doi.org/10.1016/j.bspc.2021.102591

    Article  Google Scholar 

  48. S.P. Vaidya, Fingerprint-based robust medical image watermarking in hybrid transform. Vis. Comput. 39, 2245–2260 (2022). https://doi.org/10.1007/s00371-022-02406-4

    Article  PubMed  PubMed Central  Google Scholar 

  49. C.-Y. Wang, J.C. Wang, A. Santoso, C.C. Chiang, C.H. Wu, Sound event recognition using auditory-receptive-field binary pattern and hierarchical-diving deep belief network. IEEE/ACM Trans. Audio Speech Lang. Process. 26(8), 1336–1351 (2018). https://doi.org/10.1109/taslp.2017.2738443

    Article  ADS  Google Scholar 

  50. Wikipedia contributors. Mel-frequency cepstrum—Wikipedia, the free encyclopedia (2019). https://en.wikipedia.org/w/index.php?title=Mel-frequency_cepstrum &oldid=917928298

  51. J. Wu, E. Vincent, S.A. Raczynski, T. Nishimoto, N. Ono, S. Sagayama, Polyphonic pitch estimation and instrument identification by joint modeling of sustained and attack sounds. IEEE J. Sel. Top. Signal Process. 5(6), 1124–1132 (2011). https://doi.org/10.1109/jstsp.2011.2158064

    Article  ADS  Google Scholar 

  52. X. Wu, C.-W. Ngo, Q. Li, Threading and auto documenting news videos: a promising solution to rapidly browse news topics. IEEE Signal Process. Mag. 23(2), 59–68 (2006). https://doi.org/10.1109/msp.2006.1621449

    Article  ADS  Google Scholar 

  53. D. Yu, H. Duan, J. Fang, B. Zeng, Predominant instrument recognition based on deep neural network with auxiliary classification. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 852–861 (2020). https://doi.org/10.1109/taslp.2020.2971419

    Article  Google Scholar 

  54. N. Zermi, A. Khaldi, M.R. Kafi, F. Kahlessenane, S. Euschi, Robust SVD-based schemes for medical image watermarking. Microprocess. Microsyst. 84, 1–12 (2021). https://doi.org/10.1016/j.micpro.2021.104134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Kumar Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S.K., Solanki, S.S. & Chakraborty, S. Deep Convolutional Neural Networks for Predominant Instrument Recognition in Polyphonic Music Using Discrete Wavelet Transform. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02641-1

Keywords

Navigation