Skip to main content
Log in

A 13.73 ns Input Time Range TDA Design Based on Adjustable Current Sources Using 40-nm CMOS Process

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This study presents a time-difference amplifier (TDA) based on adjustable current sources. The proposed amplifier uses a phase detection circuit, delay element, and current source architecture for time-difference (i.e., delay) amplification. It includes a reset circuit that prevents the capacitors in the current sources from charging and discharging simultaneously. In addition, an adjustable current source control increases the range of input time difference. The TDA design is implemented in TSMC 40-nm technology with \(964.24 \times 961.81\) µm\(^2\) overall chip area and \(209.42 \times 84.76\) µm\(^2\) core area. The TDA achieves the widest time-difference input range of ± 13,730 ps, less than 4% gain error, the lowest supply voltage, and the highest FOM compared to prior TDAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A.M. Abas, A. Bystrov, D.J. Kinniment, O.V. Maevsky, G. Russell, A.V. Yakovlev, Time difference amplifier. Electron. Lett. 38(23), 1437–1437 (2002). https://doi.org/10.1049/el:20020961

    Article  Google Scholar 

  2. A. Avilala, S. Reddy, D.S. Kamarajugadda, S. Sampath, P. Suresh, C.-C. Wang, High resolution time-to-digital converter design with anti-PVT-variation mechanism, in Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology (ICET), pp. 452–455 (2021). https://doi.org/10.1109/ICET51757.2021.9451146

  3. B. Dehlaghi, S. Magierowski, L. Belostotski, Highly-linear time-difference amplifier with low sensitivity to process variations. Electron. Lett. 47(13), 743–745 (2011). https://doi.org/10.1049/el.2011.1279

    Article  Google Scholar 

  4. S. M. Golzan, J. Sobhi, Z. D. Koozehkanani, An open-loop time amplifier with zero-gain delay in output for coarse-fine time to digital converters, in Proceedings of the 2021 29th Iranian Conference on Electrical Engineering (ICEE), pp. 139–142 (2021). https://doi.org/10.1109/ICEE52715.2021.9544270

  5. S. Henzler, Time-to-Digital Converter, Springer Series in Advanced Microelectronics, vol. 29 (2010). https://doi.org/10.1007/978-90-481-8628-0

  6. S.-J. Kim, S.-H. Cho, A variation tolerent reconfigurable time difference amplifier, in Proceedings of the 2009 International SoC Design Conference (ISOCC), pp. 301–304 (2009). https://doi.org/10.1109/SOCDC.2009.5423787

  7. H.-J. Kwon, J.-S. Lee, J.-Y. Sim, H.-J. Park, A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio, in Proceedings of the 2021 IEEE Asian Solid-State Circuits Conference 2011, pp. 325–328 (2011). https://doi.org/10.1109/ASSCC.2011.6123579

  8. C.F. Lee, P.K.T. Mok, A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J. Solid-State Circuits 39(1), 3–14 (2004). https://doi.org/10.1109/JSSC.2003.820870

    Article  Google Scholar 

  9. J. Lee, S. Lee, Y. Song, S. Nam, High gain and wide range time amplifier using inverter delay chain in SR latches. IEICE Trans. Electron. 92(12), 1548–1550 (2009). https://doi.org/10.1587/transele.E92.C.1548

    Article  Google Scholar 

  10. M. Lee, A.A. Abidi, A 9b, 1.25ps resolution coarse-fine time-to-digital converter in 90nm CMOS that amplifies a time residue, in Proceedings of the 2007 IEEE Symposium on VLSI Circuits, pp. 168–169 (2007). https://doi.org/10.1109/VLSIC.2007.4342701

  11. A. Mamba, M. Sasaki, Tiny two-stage 1-GHz time-difference amplifier without input time-difference limitation and extreme points, in Proceedings of the 2020 27th IEEE international conference on electronics, circuits and systems (ICECS), pp. 1–4 (2020). https://doi.org/10.1109/ICECS49266.2020.9294917

  12. H. Molaei, A. Khorami, K. Hajsadeghi, A wide dynamic range low power 2\(\times \) time amplifier using current subtraction scheme, in Proceedings of the 2016 IEEE international symposium on circuits and systems (ISCAS), pp. 462–465 (2016). https://doi.org/10.1109/ISCAS.2016.7527277

  13. T. Nakura, S. Mandai, M. Ikeda, K. Asada, Time difference amplifier using closed-loop gain control, in Proceedings of the 2009 Symposium on VLSI Circuits, pp. 208–209 (2009)

  14. R. Sapawi, R.L.S Chee, S.K Sahari, N. Julai, Performance of CMOS Schmitt Trigger, in 2008 International Conference on Computer and Communication Engineering, pp. 1317–1320 (2008). https://doi.org/10.1109/ICCCE.2008.4580818

  15. H. Sebak, M. Rashdan, E.-S. Hasaneen, Gain and linearity trade-off in time-difference amplifier design, in Proceedings of the 2016 33rd National Radio Science Conference (NRSC), pp. 406–414 (2016). https://doi.org/10.1109/NRSC.2016.7450855

  16. C.-C. Wang, K.-Y. Chao, S. Sampath, P. Suresh, Anti-PVT-variation low-power time-to-digital converter design using 90-nm CMOS process. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(9), 2069–2073 (2020). https://doi.org/10.1109/TVLSI.2020.3008424

  17. W. Wu, R.J. Baker, P. Bikkina, F. Garcia, E. Mikkola, A linear high gain time difference amplifier using feedback gain control, in Proceedings of the 2016 IEEE Dallas Circuits and Systems Conference (DCAS), pp. 1–4 (2016). https://doi.org/10.1109/DCAS.2016.7791126

  18. S.-C. Yi, An 8-bit current-steering digital to analog converter. AEU-Int. J. Electron. Commun. 66(5), 433–437 (2012). https://doi.org/10.1016/j.aeue.2011.10.003

    Article  Google Scholar 

  19. J.-H. Yu, M.-K. Park, S.-W. Kim, A 2ps minimum-resolution, wide-input-range time-to-digital converter for the time-of-flight measurement using cyclic technique and time amplifier, in Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), pp. 151–152 (2016). https://doi.org/10.1109/ICCE.2016.7430559

  20. S. Ziabakhsh, G. Gagnon, G.W. Roberts, An all-digital high-resolution programmable time-difference amplifier based on time latch, in Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2018). https://doi.org/10.1109/ISCAS.2018.8351369

Download references

Acknowledgements

The authors would like to thank Taiwan Semiconductor Research Institute (TSRI) for providing the EDA tool and Taiwan’s National Science Council (NSTC) for funding this research under NSTC 110-2224-E-110-004-, NSTC 110-2221-E-110-063-MY2, and NSTC 111-2623-E-110-002 -.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chua-Chin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CC., Jose, O.L.J.A., Lin, L. et al. A 13.73 ns Input Time Range TDA Design Based on Adjustable Current Sources Using 40-nm CMOS Process. Circuits Syst Signal Process (2024). https://doi.org/10.1007/s00034-024-02640-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00034-024-02640-2

Keywords

Navigation