Skip to main content
Log in

Energy-Efficient Exact and Approximate CNTFET-Based Ternary Full Adders

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Ternary circuits are promising due to their lower interconnect complexity, storage requirement, and lesser pin count than binary circuits. The adder is one of the most important building blocks of a digital processor. This paper proposes carbon nanotube field effect transistor (CNTFET)-based ‘exact’ and ‘approximate’ ternary full adders (TFA). The CNTFET is attractive for realizing multi-valued logic (MVL)/ternary circuits because its threshold voltage can be changed by altering the diameter of its carbon nanotube (CNT). The exact ternary adders are realized using unary functions and multiplexers. The circuit size of only the ‘Sum’ block of a TFA is pruned in approximate ternary full adders by varying degrees for achieving superior performance in terms of transistor count, delay, and power consumption compared to the ‘exact’ TFAs. This performance gain in approximate TFAs is obtained at the cost of accuracy in some of the ‘Sum’ outputs. Circuits are simulated with HSPICE using a 32 nm CNTFET technology node at various supply voltages and temperatures. The proposed exact adders exhibit lower power consumption and transistor count, higher robustness, and lower power delay product (PDP) and energy delay product (EDP) than existing ternary adders. The improvement in PDP of the proposed exact TFAs varies from 20 to 96% compared to existing TFAs. The performance of the exact TFAs is then further improved by approximating its ‘Sum’ block in approximate TFAs. Image blending is used to demonstrate the effectiveness of approximate ternary adders in error-tolerant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14.
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

SPICE-compatible CNTFET models are used for analyses from Stanford University Website: http://nano.stanford.edu/model.php?id=23

References

  1. E. Abbasian, A. Aminzadeh, S.T. Anvari, GNRFET- and CNTFET-based designs of highly efficient 22 T unbalanced single-trit ternary multiplier cell. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08053-8

    Article  Google Scholar 

  2. E. Abbasian, M. Orouji, S.T. Anvari, An efficient GNRFET-based circuit design of ternary half-adder. AEUE – Int. J. Electr. Commun. 170, 154808 (2023). https://doi.org/10.1016/j.aeue.2023.154808

    Article  Google Scholar 

  3. S.S. Ahmadpour, M. Mosleh, New designs of fault-tolerant adders in quantum-dot cellular automata. Nano Commun. Netw. 19, 10–25 (2019). https://doi.org/10.1016/j.nancom.2018.11.001

    Article  Google Scholar 

  4. N.H. Bastani, M.H. Moaiyeri, K. Navi, An energy and area-efficient approximate ternary adder based on CNTFET switching logic. Circuits, Syst. Signal Process. 37, 1863–1883 (2018). https://doi.org/10.1007/s00034-017-0627-1

    Article  Google Scholar 

  5. D. Das, A. Banerjee, V. Prasad. 2018: Design of ternary logic circuits using CNTFET, International Symposium on Devices, Circuits and Systems (ISDCS), (2018). https://doi.org/10.1109/ISDCS.2018.8379661.

  6. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities and its application-part I: model of the intrinsic channel region. IEEE Trans. Electr. Dev. 54, 3186–3194 (2007). https://doi.org/10.1109/TED.2007.909030

    Article  Google Scholar 

  7. J. Deng, H.S.P. Wong, A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities and its application-part II: full device model and circuit performance benchmarking. IEEE Trans. Electr. Dev. 54, 3195–3205 (2007). https://doi.org/10.1109/TED.2007.909043

    Article  Google Scholar 

  8. S. Firouzi, S. Tabrizchi, F. Sharifi, A.-H. Badawy, High performance, variation-tolerant CNTFET ternary full adder a process, voltage, and temperature variation-resilient design. Comput. Electr. Eng. 77, 205–216 (2019). https://doi.org/10.1016/j.compeleceng.2019.05.018

    Article  Google Scholar 

  9. J. Guo, S. Koswatta, N. Neonphytou, M. Lundstrom, Carbon nanotube field-effect transistors. Int. J. High-Speed Electr. Syst. 16(4), 897–912 (2006). https://doi.org/10.1049/joe.2015.0119

    Article  Google Scholar 

  10. S.A. Hosseini, S. Etezadi, A novel low-complexity and energy-efficient ternary full adder in nanoelectronics. Circuits Sys. Sig. Proc. 40, 1314–1332 (2021). https://doi.org/10.1007/s00034-020-01519-2

    Article  Google Scholar 

  11. R.A. Jaber, M.A. Jihad, B. Owaidat, S. Al-Maadeed, Ultra-low energy CNTFET-based ternary combinational circuits designs. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3105577

    Article  Google Scholar 

  12. R.A. Jaber, A.M. Haidar, F. Kassem, F. Zahoor, Ternary full adder designs employing unary operators and ternary multiplexers. Micromachines 14, 1064 (2023). https://doi.org/10.3390/mi14051064

    Article  Google Scholar 

  13. R.A. Jaber, A. Kaseem, A.E. Hajj, L.A. El-Nimri, A.M. Haidar, High-performance and energy-efficient CNFET-based designs for ternary logic circuits. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2928251

    Article  Google Scholar 

  14. P. Keshavarzian, R. Sarikhan, A novel CNTFET-based ternary full adder. Circuits Syst. Signal Process. 33, 665–679 (2014). https://doi.org/10.1007/s00034-013-9672-6

    Article  Google Scholar 

  15. J. Kong, A. Javey, Carbon nanotube electronics (Springer, New York, 2013)

    Google Scholar 

  16. J. Ko, J. Kim, J. Jeong, T. Song, Exploration of ternary logic using T-CMOS for circuit-level design. IEEE Trans. Circuits Syst. I: Regular Papers (2023). https://doi.org/10.1109/TCSI.2023.3287274

    Article  Google Scholar 

  17. S. Lin, Y.B. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Trans. Nanotechnol. 10(2), 217–225 (2011). https://doi.org/10.1109/TNANO.2009.2036845

    Article  Google Scholar 

  18. M. Maleknejad, S. Mohammadi, K. Navi, H.R. Naji, M. Hosseinzadeh, A CNTFET-based hybrid multi-threshold 1-bit full adder design for energy efficient low power applications. Int. J. Electr. 105(10), 1753–1768 (2018). https://doi.org/10.1080/00207217.2018.1477205

    Article  Google Scholar 

  19. A. Malik, M. S. Hussain, and M. Hasan.: An Approximate Ternary Full Adder using Carbon nanotube field effect transistors, 2022 5th Int. Cont. on Multimedia, Signal Processing and Communication Technologies, India, pp. 1–6, (2022), https://doi.org/10.1109/IMPACT55510.2022.10029151.

  20. M. Moaiyeri, M.Z. Taheri, Efficient passive shielding of MWCNT interconnects to reduce crosstalk effects in multiple-valued logic circuits. IEEE Trans. Electromagn. Compat. 61(5), 1593–1601 (2019). https://doi.org/10.1109/TEMC.2018.2863378

    Article  Google Scholar 

  21. P. Muthukrishnan, S. Sathasivam, A technical survey on delay defects in nanoscale digital VLSI circuits. MDPI Appl. Sci. 12(18), 9103 (2022). https://doi.org/10.3390/app12189103

    Article  Google Scholar 

  22. A. Panahi, F. Sharifi, M.H. Moaiyeri, K. Navi, CNTFET-Based approximate ternary adders for energy-efficient image processing application. Microprocess. Microsyst. (2016). https://doi.org/10.1016/j.micpro.2016.07.015

    Article  Google Scholar 

  23. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Trans. Nanotechnol. 4(2), 168–179 (2005). https://doi.org/10.1109/TNANO.2004.842068

    Article  Google Scholar 

  24. A. Sachdeva, D. Kumar, E. Abbasian, A carbon nano-tube field effect transistor-based stable, low-power 8T static random access memory cell with improved write access time. AEUE – Int. J. Electr. Commun. 162, 154565 (2023). https://doi.org/10.1016/j.aeue.2023.154565

    Article  Google Scholar 

  25. S.K. Sahoo, G. Akhilesh, R. Sahoo, M. Muglikar, High-performance ternary half adder using CNTFET. IEEE Trans. Nanotechnol. (2017). https://doi.org/10.1109/TNANO.2017.2649548

    Article  Google Scholar 

  26. I.M. Salehabad, K. Navi, M. Hosseinzadeh, Two novel inverter-based ternary full adder cells using CNFETs for energy-efficient applications. Int. J. Electron. (2019). https://doi.org/10.1080/00207217.2019.1636306

    Article  Google Scholar 

  27. F.M. Sardroudi, M. Habibi, M.H. Moaiyeri, A low-power dynamic ternary full adder using carbon nanotube field-effect transistors. AEUE – Int. J. Electr. Commun. 131, 153600 (2021). https://doi.org/10.1016/j.aeue.2020.153600

    Article  Google Scholar 

  28. S.K. Sinha, S. Chaudhury, Comparative study of leakage power in CNTFET over MOS device. J. Semicond. 35(11), 01–06 (2014). https://doi.org/10.1088/1674-4926/35/11/114002

    Article  Google Scholar 

  29. S. K. Sinha, K. Kumar, S. Chaudhury.: CNTFET: the emerging post-CMOS device, International Conference on Signal Processing and Communication, pp. 372–374, (2013). https://doi.org/10.1109/ICSPCom.2013.6719815

  30. I.M. Salehabad, K. Navi, M. Hosseinzadeh, Two novel inverter-based ternary full adder cells using CNTFETs for energy-efficient applications. Int. J. Electr. (2019). https://doi.org/10.1080/00207217.2019.1636306

    Article  Google Scholar 

  31. Stanford University CNTFET model Website. Stanford University, Stanford, CA [Online], (2008). http://nano.stanford.edu/model.php?id=23

  32. S. Tabrizchi, A. Panahi, F. Sharifi, Method for designing ternary adder cells based on CNFETs. IET Circuits Dev. Syst. 11(5), 465–470 (2017). https://doi.org/10.1049/iet-cds.2016.0443

    Article  Google Scholar 

  33. F. Yang, X. Wang, D. Zhang et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 510, 522–524 (2014). https://doi.org/10.1038/nature13434

    Article  Google Scholar 

  34. F. Zahoor, M. Hanif, U.I. Bature, S. Bodapati, A. Chattopadhyay, F.A. Hussin, H. Abbas, F. Merchant, F. Bashir, Carbon nanotube field effect transistors: an overview of the device structure, modeling, fabrication, and applications. Phys. Scr. 98, 082003 (2023). https://doi.org/10.1088/1402-4896/ace855

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first and second authors have done the circuit design, simulation, result generation and manuscript writing. The third author has a supervisory role with contributions to circuit design, reviewing and submitting the manuscript.

Corresponding author

Correspondence to Mohd. Hasan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Hussain, M.S. & Hasan, M. Energy-Efficient Exact and Approximate CNTFET-Based Ternary Full Adders. Circuits Syst Signal Process 43, 2982–3003 (2024). https://doi.org/10.1007/s00034-023-02589-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02589-8

Keywords

Navigation