Skip to main content
Log in

Efficient ATFA design based on CNTFET technology for error–tolerant applications

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Today, the main concern of digital circuit designers is reducing the power of portable equipment due to the limitation of charging their batteries. One of the ways to reduce power consumption is to use approximate units in systems that have the ability to tolerate faults. Another solution to consider is designing circuits with Multi-Valued Logic (MVL), which can also reduce power consumption. The use of CNTFET transistors in MVL circuit designs can lead to higher efficiency in integrated circuits, particularly in terms of power, speed and area. Full adders are essential arithmetic modules in processors and serve as the cornerstone of digital systems. In this research study, we aimed to design an Approximate Ternary Full Adder (ATFA) with the minimum number of transistors and power consumption. Based on simulations conducted using Synopsys HSPICE in Stanford's 32 nm CNTFET technology, the proposed ATFA design demonstrated superior performance compared to previous similar designs, particularly in terms of average power consumption, delay, and energy consumption. In addition, according to the examination of noise immunity curves, the proposed circuit has higher pulse noise amplitude in all pulse widths than other circuits. Meanwhile, at the program level, image composition has been considered to study accuracy criteria such as peak Signal-to-Noise Ratio (PSNR), Structural Similarity (SSIM), and Figures Of Merit (FOM) in image synthesis, supported the superior performance of our proposed circuit compared to other similar circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Anusha, P. Deepa, Design of approximate adders and multipliers for error-tolerant image processing. Microprocess. Microsyst. 72, 102940 (2020). https://doi.org/10.1016/j.micpro.2019.102940

    Article  Google Scholar 

  2. P.C. Balla, A. Antoniou, Low power dissipation MOS ternary logic family. IEEE J. Solid-State Circuits 19, 739 (1984). https://doi.org/10.1109/JSSC.1984.1052216

    Article  Google Scholar 

  3. Y. Bok Kim, Y. B. Kim F. Lombardi, novel design methodology to optimize the speed and power of the CNTFET circuits. In Proc. 2009 IEEE Internationl. Midwest Symposium on Circuits and Systems, 1130 (2009). https://doi.org/10.1109/MWSCAS.2009.5235967

  4. G. Cho, F. Lombardi, Design and process variation analysis of CNTFET-based ternary memory cells. Integr. VLSI J. 54(c), 97 (2016). https://doi.org/10.1016/j.vlsi.2016.02.003

    Article  Google Scholar 

  5. J. Deng, Ph.D. thesis, Stanford University, device modeling and circuit performance evaluation for nanoscale device: silicon technology beyond 45 nm node ancarbon nanotube field effect transistors, (2007).

  6. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube fieldeffect transistors including nonidealities and its application–part I: model of the intrinsic channel region. IEEE Trans. Electron. Devi. 54(12), 3186 (2007). https://doi.org/10.1109/TED.2007.909030

    Article  Google Scholar 

  7. J. Deng, H.-S.P. Wong, A compact SPICE model for carbon-nanotube fieldeffect transistors including nonidealities and its application–part II: full device model and circuit performance benchmarking. IEEE Trans. Electron. Dev. 54(12), 3195 (2007). https://doi.org/10.1109/TED.2007.909043

    Article  Google Scholar 

  8. E. Dubrova, Multiple-valued logic in VLSI: challenges and opportunities. Proc. NORCHIP 99, 340–350 (1999)

    Google Scholar 

  9. T. Erik, Z. Renb, T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X

    Article  Google Scholar 

  10. N. Hajizadeh Bastani, M.H. Moaiyeri, K. Navi, An Energy- and area-efficient approximate ternary adder based on CNTFET switching logic. Circuits Syst. Signal Process. 37, 1863 (2018). https://doi.org/10.1007/s00034-017-0627-1

    Article  Google Scholar 

  11. J. Huang, T. Nandha Kumar and H. Abbas, Simulation-based evaluation of approximate adders for image processing using voltage overscaling method, IEEE 5th International Conference on Signal and Image Processing (ICSIP), 499 (2020). https://doi.org/10.1088/1742-6596/1962/1/012050

  12. J. Huang, M. Zhu, P. Gupta, S. Yang, S. M. Rubin, G. Garret, and J. He, “A CAD tool for design and analysis of CNFET circuits. IEEE Int. Conf. Electron Devices and Solid-State Circuits, Hong Kong, p. 1 (2010) https://doi.org/10.1109/EDSSC.2010.5713735

  13. M. Huang, S. Zhu, P. Yang, W. Gupta, S.M. Zhang, G. Rubin, J.H. Garreton, A physical design tool for carbon nanotube field-effect transistor circuits. ACM J. Emerg. Technol. Comput. Syst. 8, 1 (2012). https://doi.org/10.1145/2287696.2287708

    Article  Google Scholar 

  14. Home of the electric VLSI design system website, available at http://www.staticfreesoft.com/index.html

  15. S.L. Hurst, Multiple-valued logic- its status and its future. IEEE Trans. Comput. C–33(12), 1160 (1984). https://doi.org/10.1109/TC.1984.1676392

    Article  Google Scholar 

  16. N.V. Karimi, Y. Pourasad, Investigating the effect of some parameters of the channel on the characteristics of tunneling carbon nanotube field-effect transistor. Int. Nano Lett. 6, 215–221 (2016). https://doi.org/10.1007/s40089-016-0182-y

    Article  Google Scholar 

  17. J. Liang, J. Han, F. Lombardi, New metrics for the reliability of approximate and probabilistic adders. IEEE Trans. Comput. 62(9), 1760 (2013). https://doi.org/10.1109/TC.2012.146

    Article  MathSciNet  Google Scholar 

  18. S. Lin, Y.-B. Kim, F. Lombardi, CNTFET-based design of ternary logic gates and arithmetic circuits. IEEE Transact. Nanotechnol. 10, 217 (2011). https://doi.org/10.1109/TNANO.2009.2036845

    Article  Google Scholar 

  19. S. Ijiima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991). https://doi.org/10.1038/354056a0

    Article  Google Scholar 

  20. M. Mahjoubi, M. Dadashi, K. Manochehri, S. Pourmozafari, Two Efficient ternary adder designs based on CNFET technology. Comput. Knowl. Eng. 4(1), 25–34 (2021). https://doi.org/10.22067/cke.2021.70110.1009

    Article  Google Scholar 

  21. M. Malik, S. Hussain and M. Hasan, An approximate ternary full adder using Carbon nanotube field effect transistors, 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), Aligarh, India, 1–6, (2022) https://doi.org/10.1109/IMPACT55510.2022.1002915

  22. M. Maleknejad, R. Faghih Mirzaee, K. Navi Keivan, O. Hashemipour, Multi-Vt ternary circuits by carbon nanotube filed effect transistor technology for low-voltage and low-power applications. J. Comput. Theor. Nanosci. 11(1), 110 (2014). https://doi.org/10.1166/jctn.2014.3324

    Article  Google Scholar 

  23. A. Mohammadi, M. Mohammadi Ghanatghestani, A. Sabbagh Molahosseini, Y. Safaei Mehrabani, High-performance and energy-area efficient approximate full adder for error tolerant applications. ECS J. Solid State Sci. Technol. (2022). https://doi.org/10.1149/2162-8777/ac861c

    Article  Google Scholar 

  24. A. Mohammadi, M. Mohammadi Ghanatghestani, A. Sabbagh Molahosseini, Y. Safaei Mehrabani, Image processing with high-speed and low-energy approximate arithmetic circuit. Sustain. Comput. Inform. Syst. 36, 100781 (2022). https://doi.org/10.1016/j.suscom.2022.100781

    Article  Google Scholar 

  25. K. Navi, R. Sharifi Rad, M.H. Moaiyeri, A. Momeni, A low-voltage and energy-efficient full adder cell based on carbon nanotube technology. Nano-Micro Lett. 2, 114 (2010). https://doi.org/10.1007/BF03353628

    Article  Google Scholar 

  26. A. Neelam, P. Manisha, G.K. Sharma, Energy-efficient logarithmic square rooter for error-resilient applications. IEEE Transact. Very Large Scale Integ. (VLSI) Syst. 29(11), 1994–1997 (2021)

    Article  Google Scholar 

  27. A. Niedzicka, Computation-intensive image processing algorithm parallelization on multiple hardware architectures, Proceedings. International Conference on Parallel Computing in Electrical Engineering, Warsaw, Poland. 25 (2002) https://doi.org/10.1109/PCEE.2002.1115341

  28. A. Panahi, F. Sharifi, M.H. Moaiyeri, K. Navi, CNFET-based approximate ternary adders for energyefficient image processing applications. Microprocessors 47(Part B), 454 (2016). https://doi.org/10.1016/j.micpro.2016.07.015

    Article  Google Scholar 

  29. M.C. Parameshwara, Approximate full adders for energy efficient image processing applications. J. Circuits, Syst. Comput. 30(13), 2150235 (2021). https://doi.org/10.1142/S0218126621502352

    Article  Google Scholar 

  30. A. Raychowdhury, K. Roy, Carbon nanotube electronics: design of high-performance and low-power digital circuits. IEEE Trans. Circuits Syst. 54(11), 2391 (2007). https://doi.org/10.1109/TCSI.2007.907799

    Article  Google Scholar 

  31. A. Raychowdhury, Student Member, IEEE, Ali Keshavarzi, Member, IEEE, Juanita Kurtin, Vivek De, and Kaushik Roy, Carbon Nanotube Field-Effect Transistors for High-Performance Digital Circuits—DC Analysis and Modeling Toward Optimum Transistor Structure, Fellow, IEEE Transactions on Electron Devices, 53(11), (2006) https://ieeexplore.ieee.org/document/1715613

  32. A. Raychowdhury, K. Roy, Carbon-nanotube-based voltage-mode multiple-valued logic design. IEEE Transact. Nanotechnol. 4(2), 168 (2005). https://doi.org/10.1109/TNANO.2004.842068

    Article  Google Scholar 

  33. K. Roy, S. Mukhopadhyay, H. Meirmandi, Leakage current mechanisms and leakage reduction technologies in deep-submicron CMOS circuits. Proc. IEEE 91(2), 305 (2003)

    Article  Google Scholar 

  34. J.N. Roy, T. Chattopadhyay, All-optical quaternary logic based information processing: challenges and opportunities, in Design and Architectures for Digital Signal Processing (InTech, Croatia, pp. 81 (2013) https://doi.org/10.5772/51559

  35. Y. Safaei Mehrabani and M. Eshghi, Noise and process variation tolerant, low-power, high-speed, and low-energy full adders in CNFET technology. IEEE Transact. Very Large Scale Integr. VLSI Syst., 24(11), 3268 (2016) https://doi.org/10.1109/TVLSI.2016.2540071

  36. Y. Safaei Mehrabani, M. Mohammadi Ghanatghestani, R. Sharifirad, A.M. Hassanzadeh, Power-efficient and high-speed design of approximate full adders using CNFET technology. Int. J. Nano Dimens. 13(2), 179 (2022). https://doi.org/10.22034/ijnd.2022.686218

    Article  Google Scholar 

  37. Y. Safaei Mehrabani, M.H. Shafiabadi, A novel high-performance and reliable multi-threshold CNFET full adder cell design. Int. J. High Perform. Systems Archit. 7, 15 (2017). https://doi.org/10.1504/IJHPSA.2017.083644

    Article  Google Scholar 

  38. K. El-Shabrawy, K. Maharatna, D. Bagnall, B.M. Al-Hashimi, Modeling SWCNT bandgap and effective mass variation using a monte carlo approach. IEEE Trans. Nanotechnol. 9, 184 (2010). https://doi.org/10.1149/2162-8777/ac861c

    Article  Google Scholar 

  39. M. Shafique, L. Bauer and J. Henkel, enBudget: a Run-Time Adaptive Predictive Energy-Budgeting scheme for energy-aware Motion Estimation in H.264/MPEG-4 AVC video encoder, Design, Automation & Test in Europe Conference & Exhibition .Dresden, Germany, 08–12 March (2010) https://doi.org/10.1109/DATE.2010.5457093

  40. S.K. Sinha, and S. Chaudhury, Simulation and Analysis Of Quantum Capacitance In Single-Gate MOSFET, Double-Gate MOSFET and CNTFET Devices For Nanometre Regime, 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS) https://doi.org/10.1109/CODIS.2012.6422160

  41. K. Tanaka, T. Yamabe, K. Fukui, The science and technology of carbon nanotubes. 639 (1997). https://doi.org/10.1080/10641220009351440

  42. X. Wu, F. Prosser, CMOS ternary logic circuits. IEE Proc. G Circuits Dev. Syst 137, 21 (1990). https://doi.org/10.1049/IP-G-2.1990.0005

    Article  Google Scholar 

  43. Q. Xu, T. Mytkowicz, N.S. Kim, Approximate computing: a survey. IEEE Design Test. 33(1), 8 (2016). https://doi.org/10.1109/MDAT.2015.2505723

    Article  Google Scholar 

  44. Y. Yasuda, Y. Tokuda, S. Zaima, K. Pak, T. Nakamura, A. Yoshida, Realization of quaternary logic circuits by n-channel MOS devices. IEEE J. Solid-State Circuits 21, 162 (1986)

    Article  Google Scholar 

  45. A.J. Yang, J. Liang, J. An, F. Lombardi, Approximate XOR/XNOR-based adders for inexact computing. In Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference, 690 (2013). https://doi.org/10.1109/NANO.2013.6720793

  46. M. Yousefi, Z. Moradi, K. Monfaredi, CNTFET based pseudo ternary adder design and simulation. AUT J. Elec. Eng. 54(2), 361–376 (2022). https://doi.org/10.22060/eej.2022.20853.5443

    Article  Google Scholar 

  47. X. Zhao, M. Ohkohchi, M. Wang, S. Lijima, T. Ichihashi, Y. Ando, Carbon 35(6), 775 (1997). https://doi.org/10.1016/S0008-6223(97)00033-X

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Mohammadi Ghanatghestani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi Rad, R., Mohammadi Ghanatghestani, M. & Hashemipour, M. Efficient ATFA design based on CNTFET technology for error–tolerant applications. Circuits Syst Signal Process 43, 1119–1143 (2024). https://doi.org/10.1007/s00034-023-02506-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02506-z

Keywords

Navigation