Skip to main content
Log in

Complex Total Least Mean M-Estimate Adaptive Algorithm for Noisy Input and Impulsive Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The complex domain adaptive filtering algorithms has shown excellent performance in the field of signal processing. Among them, the well-known complex least mean square (CLMS) algorithm has been widely used in practical projects. However, the CLMS algorithm only considers the case where the output signal is disturbed by noise, ignores the input signal may also be interfered by noise. Moreover, the signal is likely to be disturbed by impulsive noise in practice. Based on the above problems, the complex total least mean M-estimation (CTLMM) adaptive algorithm based on the M-estimation function is put forward in this paper. The algorithm can well handle the case where both input and output signals are subject to complex domain noise interference, and it also shows robustness with impulsive noise. This paper also analyzes the local stability of the CTLMM algorithm and discuss the theoretical steady-state error of the algorithm. Finally, simulation results verify the advantages of CTLMM algorithm and the rightness of the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. R. Arablouei, S. Werner, K. Doğançay, Analysis of the gradient-descent total least-squares adaptive filtering algorithm. IEEE Trans. Signal Process. 62(5), 1256–1264 (2014)

    Article  MathSciNet  Google Scholar 

  2. D. Barbosa, R.M. Monaro, D.V. Coury, M. Oleskovicz, Digital frequency relaying based on the modified least mean square method. Int. J. Elec power. 32(3), 236–242 (2010)

    Article  Google Scholar 

  3. Y.-R. Chien, C.-H. Yu, H.-W. Tsao, Affine-projection-like maximum correntropy criteria algorithm for robust active noise control. IEEE/ACM Trans. Audio, Speech Lang. Process 30, 2255–2266 (2022)

    Article  Google Scholar 

  4. J.P.F. Guimarães, A.I.R. Fontes, J.B.A. Rego, A.M. Martins, J.C. Principe, Complex correntropy: Probabilistic interpretation and application to complex-valued data. IEEE Signal Process. Lett. 24, 42–45 (2017)

    Article  Google Scholar 

  5. J. He, G. Wang, X. Zhang, H. Wang, B. Peng, Maximum total generalized correntropy adaptive filtering for parameter estimation. Signal Processing 203, 108787 (2007)

    Article  Google Scholar 

  6. L. Li, Y.F. Pu, Widely linear complex-valued least mean m-estimate algorithms: design and performance analysis. Circuits Syst. Signal Process. 41, 5785–5806 (2022)

    Article  Google Scholar 

  7. W. Liu, P.P. Pokharel, J. Príncipe, Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  8. W. Ma, H. Qu, G. Gui, L. Xu, J. Zhao, B. Chen, Maximum correntropy criterion based sparse adaptive filtering algorithms for robust channel estimation under non-Gaussian environments. J. Franklin Inst. 352(7), 2708–2727 (2015)

    Article  Google Scholar 

  9. S. Peng, B. Chen, L. Sun, W. Ser, Z. Lin, Constrained maximum correntropy adaptive filtering. Signal Process. 140, 116–126 (2017)

    Article  Google Scholar 

  10. A.K. Pradhan, A. Routray, A. Basak, Power system frequency estimation using least mean square technique. IEEE Trans. Power Delivery. 20(3), 1812–1816 (2005)

    Article  Google Scholar 

  11. G. Qian, S. Wang, H.H.C. Iu, Maximum total complex correntropy for adaptive filter. IEEE Trans. Signal Process. 68(1), 978–989 (2020)

    Article  MathSciNet  Google Scholar 

  12. G. Qian, S. Wang, L. Wang, S. Duan, Convergence analysis of a fixed point algorithm under maximum complex correntropy criterion. IEEE Signal Process. Lett. 25(12), 1830–1834 (2018)

    Article  Google Scholar 

  13. C.J. Ramos, A.P. Martins, A.S. Carvalho, Frequency and phase-angle estimation using ordinary least squares. IEEE Trans. Ind. Electron. 62(9), 5677–5688 (2015)

    Article  Google Scholar 

  14. A.H. Sayed, Fundamentals of adaptive filtering (Wiley, Hoboken, 2003)

    Google Scholar 

  15. T. Söerström, Errors-in-variables methods in system identification. Automatica 43(6), 939–958 (2007)

    Article  MathSciNet  Google Scholar 

  16. P. Song, H. Zhao, Affine-projection-like m-estimate adaptive filter for robust filtering in impulsive noise. IEEE Trans. Circuits Syst. II Exp. Briefs. 66(12), 2087–2091 (2019)

    Google Scholar 

  17. G. Wang, H. Zhao, Robust adaptive least mean m-estimate algorithm for censored regression. IEEE Trans. Syst. Man. Cybern. Syst. 52(8), 5165–5174 (2022)

    Article  Google Scholar 

  18. B. Widrow, J. McCool, M. Ball, The complex LMS algorithm. Proc. IEEE. 63(4), 719–720 (1975)

    Article  Google Scholar 

  19. Y. Xia, Z. Blazic, D.P. Mandic, Complex-valued least squares frequency estimation for unbalanced power systems. IEEE Trans. Instrum. Meas. 64(3), 638–648 (2015)

    Article  Google Scholar 

  20. Y. Xia, S.C. Douglas, D.P. Mandic, Adaptive frequency estimation in smart grid applications: exploiting noncircularity and widely linear adaptive estimators. IEEE Signal Process Mag. 29(5), 44–54 (2012)

    Article  Google Scholar 

  21. Y. Xia, D.P. Mandic, Widely linear adaptive frequency estimation of unbalanced three-phase power systems. IEEE Trans. Instrum. Meas. 61(1), 74–83 (2012)

    Article  Google Scholar 

  22. Y. Yu, H. He, B. Chen, J. Li, Y. Zhang, L. Lu, M-estimate based normalized subband adaptive filter algorithm: performance analysis and improvements. IEEE/ACM Trans. Audio Speech Lang. Process. 28, 225–239 (2020)

    Article  Google Scholar 

  23. Y. Yu, H. Zhao, Incremental M-estimate-based least-mean algorithm over distributed network. Electron. Lett. 52(14), 1270–1272 (2016)

    Article  Google Scholar 

  24. X. Zhang, Matrix analysis, application, 2nd edn. (Tsinghua University Press, Beijing, 2013)

    Google Scholar 

  25. H. Zhao, Z. Cao, Robust normalized subband adaptive filter algorithm based on logarithmic and total least squares for correlated input signals and impulsive noise. IEEE Trans. Circuits Syst. II Exp. Briefs. (2023). https://doi.org/10.1109/TCSII.2023.3287993

    Article  Google Scholar 

  26. H. Zhao, Z. Cao, Robust generalized maximum blake-zisserman total correntropy adaptive filter for generalized gaussian noise and noisy input. IEEE Trans. Syst. Man. Cybern. Syst. (2023). https://doi.org/10.1109/TSMC.2023.3287406

    Article  Google Scholar 

  27. H. Zhao, Y. Gao, Y. Zhu, Robust subband adaptive filter algorithms-based mixture correntropy and application to acoustic echo cancellation. IEEE/ACM Trans. Audio, Speech Lang. Process 31, 1223–1233 (2023)

    Article  Google Scholar 

  28. Z. Zheng, Z. Liu, X. Lu, Robust normalized subband adaptive filter algorithm against impulsive noises and noisy inputs. J. Franklin Inst. 357(5), 3113–3134 (2020)

    Article  MathSciNet  Google Scholar 

  29. Z. Zheng, H. Zhao, Bias-compensated normalized subband adaptive filter algorithm. IEEE Signal Process. Lett. 23(6), 809–813 (2016)

    Article  Google Scholar 

  30. Y. Zhou, S.C. Chan, K.L. Ho, New sequential partial-update least mean M-estimate algorithms for robust adaptive system identification in impulsive noise. IEEE Trans. Ind. Electron. 58(9), 4455–4470 (2011)

    Article  Google Scholar 

  31. Y. Zou, S.-C. Chan, T.-S. Ng, Least mean M-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Trans. Circuits Syst. II Anal. Digit. Signal Process. 47(12), 1564–1569 (2000). https://doi.org/10.1109/82.899657

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Natural Science Foundation of China (Grant: 62171388, 61871461, 61571374), and Fundamental Research Funds for the Central Universities (Grant: 2682021ZTPY091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Zhao, H., Liu, Y. et al. Complex Total Least Mean M-Estimate Adaptive Algorithm for Noisy Input and Impulsive Noise. Circuits Syst Signal Process 43, 994–1006 (2024). https://doi.org/10.1007/s00034-023-02492-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02492-2

Keywords

Navigation