Skip to main content
Log in

A Novel Wide Tuning Range Differential Ring Oscillator Application in Dynamically Stable and 1.17 \(\upmu \)s Lock Time CP-PLL Frequency Synthesizer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel delay cell circuit for differential ring oscillator (DRO) with large tuning range along with application in charge pump phase lock loop (CP-PLL) frequency synthesizer has been presented in this paper. Using 0.18\(\mu \)m CMOS technology with power supply of 1.8 V, the two DRO architectures: 3-stage and 5-stage, were built and simulated. In both 3-stage and 5-stage DROs, single controlled voltage is employed. The suggested 3-stage and 5-stage DRO circuits generate a tuning range of 96.77 MHz\(-\)5.296 GHz and 36.33 MHz\(-\)2.803 GHz, respectively. The % total harmonic distortion (%THD) of both DRO architectures is also evaluated. The suggested 3-stage and 5-stage DROs consume 6.63 mW and 11.05 mW power at an oscillation frequency of 4.76 GHz and 2.479 GHz, respectively. At an offset frequency of 10 MHz from the oscillation frequency, the proposed circuits have phase noise of \(-\)119.93 dBc/Hz and \(-\)128.24 dBc/Hz, respectively. The layout of proposed design has been drawn and pre- and post-layout simulation results show satisfactory variations of tuning range and phase noise of proposed design. The suggested circuit’s robustness is verified with the help of PVT and Monte Carlo analysis. When compared to contemporary research, the proposed DROs have the widest tuning range. Proposed DRO application in CP-PLL frequency synthesizer has locking time of 1.17 \(\upmu \)s and shows good settling behaviour with dynamic parameter variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Ahmad, A.M. Joshi, D. Boolchandani, T. Varma, Novel programmable readout amplifier and potentiostat for glucose sensing applications. SN Comput. Sci. 4(2), 100 (2022)

    Article  Google Scholar 

  2. A. Basaligheh, P. Saffari, W. Winkler, K. Moez, A wide tuning range, low phase noise, and area efficient dual-band millimeter-wave CMOS VCO based on switching cores. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(8), 2888–2897 (2019)

    Article  Google Scholar 

  3. Z.-Z. Chen, T.-C. Lee, The design and analysis of dual-delay-path ring oscillators. IEEE Trans. Circuits Syst. I: Regul. Pap. 58(3), 470–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Choi, K. Lim, J. Laskar, A ring VCO with wide and linear tuning characteristics for a cognitive radio system, in 2008 IEEE Radio Frequency Integrated Circuits Symposium (2008), pp. 395–398

  5. C. Danfeng, R. Junyan, D. Jingjing, L. Wei, L. Ning, A multiple-pass ring oscillator based dual-loop phase-locked loop. J. Semicond. 30(10), 105014 (2009)

    Article  Google Scholar 

  6. G. De Luca, P. Bolcato, R. Larcheveque, J. Rommes, W.H. Schilders, Fast and accurate time-domain simulations of integer-N PLLs. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(4), 931–944 (2016)

    Article  Google Scholar 

  7. A. Demir, Computing timing jitter from phase noise spectra for oscillators and phase-locked loops with white and \(1/f \) noise. IEEE Trans. Circuits Syst. I: Regul. Pap. 53(9), 1869–1884 (2006)

    Article  Google Scholar 

  8. Y.A. Eken, J.P. Uyemura, A 5.9-GHz voltage-controlled ring oscillator in 0.18-/spl mu/m CMOS. IEEE J. Solid-State Circuits 39(1), 230–233 (2004)

    Article  Google Scholar 

  9. A. Fahim, Wideband phase-locked-loop-based frequency synthesis, in Radio Frequency Integrated Circuit Design for cognitive radio systems (2015), pp. 139–186

  10. A. Fakhfakh, N. Milet-Lewis, Y. Deval, H. Levi, Study and behavioural simulation of phase noise and jitter in oscillators, in The 2001 IEEE International Symposium on Circuits and Systems (Cat. No. 01CH37196) (2001), vol. 5, pp. 323–326 (2001)

  11. X. Fan, L. Tang, Y. Wang, L. Yu, L. Yuan, Z. Yang, Z. Wang, A 1 V 0.18 \(\mu \)m fully integrated integer-N frequency synthesizer for 2.4 GHz wireless sensor network applications. Analog Integr. Circuits Signal Process. 82(1), 251–264 (2015)

    Article  Google Scholar 

  12. E. Fernández, A. Paredes, V. Sala, L. Romeral, A simple method for reducing THD and improving the efficiency in CSI topology based on SiC power devices. Energies 11(10), 2798 (2018)

    Article  Google Scholar 

  13. P. Gupta, M. Kumar, Design of modified low power CMOS differential ring oscillator using sleepy transistor concept. Analog Integr. Circuits Signal Process. 96(1), 87–104 (2018)

    Article  Google Scholar 

  14. A. Harjimiri, S. Limotyrakis, T. Lee, Jitter and phase noise in ring oscillator. IEEE J. Solid-State Circuits 34(6), 790–804 (1999)

    Article  Google Scholar 

  15. M.H. Kashani, A. Tarkeshdouz, R. Molavi, E. Afshari, S. Mirabbasi, A wide-tuning-range low-phase-noise mm-wave CMOS VCO with switchable transformer-based tank. IEEE Solid-State Circuits Lett. 1(4), 82–85 (2018)

    Article  Google Scholar 

  16. M.R. Khanzadi, A. Panahi, D. Kuylenstierna, T. Eriksson, A model-based analysis of phase jitter in RF oscillators, in 2012 IEEE International Frequency Control Symposium Proceedings (2012), pp. 1–4

  17. B.-S. Kim, A low-noise, 900-MHz VCO in 0.6-m CMOS. IEEE J. Solid-state Circuits 34(5):586–591 (1999)

  18. M. Kim, S. Choi, T. Seong, J. Choi, A low-jitter and fractional-resolution injection-locked clock multiplier using a DLL-based real-time PVT calibrator with replica-delay cells. IEEE J. Solid-State Circuits 51(2), 401–411 (2015)

    Google Scholar 

  19. M. Kumar, D. Dwivedi, A low power CMOS-based VCO design with I-MOS varactor tuning control. J. Circuits Syst. Comput. 27(10), 1850160 (2018)

    Article  MathSciNet  Google Scholar 

  20. N. Kumar, M. Kumar, Design of CMOS-based low-power high-frequency differential ring VCO. Int. J. Electron. Lett. 7(2), 143–153 (2019)

    Article  Google Scholar 

  21. H.S. Lee, D.M. Kang, S.J. Cho, C.W. Byeon, C.S. Park, Low-power, low-phase-noise g m-boosted 10-ghz VCO with center-tap transformer and stacked transistor. IEEE Trans. Circuits Syst. II: Express Briefs 67(10), 1710–1714 (2019)

    Google Scholar 

  22. S.-Y. Lee, L.-H. Wang, Q. Fang, A low-power RFID integrated circuits for intelligent healthcare systems. IEEE Trans. Inf. Technol. Biomed. 14(6), 1387–1396 (2010)

    Article  Google Scholar 

  23. G.A. Leonov, N.V. Kuznetsov, M.V. Yuldashev, R.V. Yuldashev, Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory. IEEE Trans. Circuits Syst. I: Regul. Pap. 62(10), 2454–2464 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. X. Li, J. Zhang, Y. Zhang, W. Wang, H. Liu, C. Lu, A 5.7–6.0 GHz CMOS PLL with low phase noise and \(-\)68 dBc reference spur. AEU Int. J. Electron. Commun. 85, 23–31 (2018)

    Article  Google Scholar 

  25. H.Q. Liu, W.L. Goh, L. Siek, W.M. Lim, Y.P. Zhang, A low-noise multi-GHz CMOS multiloop ring oscillator with coarse and fine frequency tuning. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17(4), 571–577 (2009)

    Article  Google Scholar 

  26. H.Q. Liu, L. Siek, W.L. Goh, W.M. Lim, A 7-GHz multiloop ring oscillator in 0.18-\(\mu \)m CMOS technology. Anal. Integr. Circuits Signal Process. 56(3), 179–184 (2008)

    Article  Google Scholar 

  27. Y.-L. Lo, Y.-T. Chiu, A high-accuracy, high-resolution, and low-cost all-digital temperature sensor using a voltage compensation ring oscillator. IEEE Sens. J. 16(1), 43–52 (2015)

    Article  Google Scholar 

  28. J.A. McNeill, Jitter in ring oscillators. IEEE J. Solid-State Circuits 32(6), 870–879 (1997)

    Article  Google Scholar 

  29. Y. Miyake, Y. Sato, S. Kajihara, A selection method of ring oscillators for an on-chip digital temperature and voltage sensor, in 2019 IEEE International Test Conference in Asia (ITC-Asia) (2019), pp. 13–18

  30. T. Nakura, M. Ikeda, K. Asada, Ring oscillator based random number generator utilizing wake-up time uncertainty, in 2009 IEEE Asian Solid-State Circuits Conference (2009), pp. 121—124

  31. R. Ratan, Design of a phase locked loop based clocking circuit for high speed serial link applications (2014)

  32. B. Razavi, Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level (Cambridge University Press, Cambridge, 2020)

    Book  Google Scholar 

  33. J.W. Rogers, C. Plett, F. Dai, Integrated Circuit Design for High-Speed Frequency Synthesis (Artech House Boston, London, 2006)

    Google Scholar 

  34. V. Ruparelia, M. Chakraverty, S.S. Desai, P. Harisankar, Performance comparison of commercially available RF analog and mixed signal simulation tools using benchmark circuits, in Microelectronics, Electromagnetics and Telecommunications (2018), pp. 443–451

  35. T.H. Saika,, M.T. Amin, Low power wide tuning range differential ring VCO for RFID transponder, in 2019 22nd International Conference on Computer and Information Technology (ICCIT) (2019), pp. 1–6

  36. S.S.A. Saleh, N. Masoumi, I. Member, Wide-tuning-range, low-phase-noise quadrature ring oscillator exploiting a novel noise canceling technique. AEU Int. J. Electron. Commun. 66(5), 372–379 (2012)

    Article  Google Scholar 

  37. S. Salem, M. Tajabadi, M. Saneei, The design and analysis of dual control voltages delay cell for low power and wide tuning range ring oscillators in 65 nm CMOS technology for CDR applications. AEU Int. J. Electron. Commun. 82, 406–412 (2017)

    Article  Google Scholar 

  38. C. Sánchez-Azqueta, S. Celma, F. Aznar, A 0.18 \(\mu \)m CMOS ring VCO for clock and data recovery applications. Microelectron. Reliab. 51(12), 2351–2356 (2011)

    Article  Google Scholar 

  39. G.K. Sharma, A.K. Johar, D. Boolchandani, Low power, wide range synthesizer for 534 MHz-18.56 GHz band with FoM of- 192.45 dBc/Hz. J. Circuits Syst. Comput. 31(02), 2250032 (2022)

    Article  Google Scholar 

  40. G.K. Sharma, T.B. Kumar, A.K. Johar, D. Boolchandani, A wide tuning range, low noise oscillator with FoM of-188 dBc/Hz in 45 nm CMOS. AEU Int. J. Electron. Commun. 125, 153390 (2020)

    Article  Google Scholar 

  41. M.-L. Sheu, Y.-S. Tiao, L.-J. Taso, A 1-V 4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 \(\mu \)m CMOS. Microelectron. J. 42(6), 897–902 (2011)

    Article  Google Scholar 

  42. C.-C. Sun, A. Hahn, C.-C. Liu, Cyber security of a power grid: state-of-the-art. Int. J. Electr. Power Energy Syst. 99, 45–56 (2018)

    Article  Google Scholar 

  43. Y. Sun, S.H. Ye, Y. Ye, Design of medical wireless sensor network. Adv. Mater. Res. 314, 2486–2490 (2011)

    Article  Google Scholar 

  44. A. Tsitouras, F. Plessas, Ultra-wideband, low-power, inductorless, 3.1–4.8 GHz, CMOS VCO. Circuits Syst. Signal Process. 30(2), 263–285 (2011)

    Article  MATH  Google Scholar 

  45. T. Wu, K. Mayaram, U.-K. Moon, An on-chip calibration technique for reducing supply voltage sensitivity in ring oscillators. IEEE J. Solid-State Circuits 42(4), 775–783 (2007)

    Article  Google Scholar 

  46. C. Zhang, Z. Li, J. Fang, J. Zhao, Y. Guo, J. Chen, A Novel high-speed CMOS fully-differentical ring VCO, in 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2014), pp. 1–3

  47. H. Zhang, H. Li, Y. Wang, A tunable CMOS ring VCO in a wide frequency range, in 2011 International Conference on Multimedia Technology (2011), pp. 6475–6478

  48. B. Zheng, L. Ding, J. Jin, A filter enhanced capacitively phase-coupled low noise 0.6-to-3 GHz Ring VCO, in 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) (2016), pp. 1531–1533

Download references

Acknowledgements

This research is supported by the Regional Academic Center for Space (RAC-S) sponsored research project. The Grant is received under RAC-S project RAC-S/PRO/21-22/01 at MNIT Jaipur. The authors are grateful to the RAC-S sponsored project, MNIT Jaipur, for providing the support to carry out the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riyaz Ahmad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Sharma, G.K., Boolchandani, D. et al. A Novel Wide Tuning Range Differential Ring Oscillator Application in Dynamically Stable and 1.17 \(\upmu \)s Lock Time CP-PLL Frequency Synthesizer. Circuits Syst Signal Process 42, 7045–7072 (2023). https://doi.org/10.1007/s00034-023-02466-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02466-4

Keywords

Navigation