Skip to main content
Log in

Analog Circuit Fault Diagnosis Based on the Fractional Sliding Model Observer

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A novel approach based on the FSMO (fractional sliding model observer) is proposed to address the problem of nonlinear fault diagnosis in analog circuits. First, the fractional transform is extensively analyzed to derive the kernel functions. Next, the kernel functions are calculated and input into the SMO (sliding model observer). Then, the fractional sliding surface data are used to construct the FSMO of the fault feature extraction model. By analyzing the fractional sliding surface data, the digital fault features are extracted and used in the nonlinear fault diagnosis of the analog circuit. Finally, the experiments demonstrate the availability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Ao, Y. Shi, W. Zhang et al., An approximate calculation of ration of normal variables and its application in analog circuit fault diagnosis. J. Electron Test 29, 555–565 (2013)

    Article  Google Scholar 

  2. H. Badihi, Y. Zhang, H. Hong, Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults. IEEE Trans. Control Syst. Technol. 23(4), 1351–1372 (2015)

    Article  Google Scholar 

  3. T.G. Burton, R.A. Goubran, F. Beaucoup, Nonlinear system identification using a subband adaptive Volterra filter. IEEE Trans. Instrum. Meas. 58(5), 1389–1397 (2009)

    Article  Google Scholar 

  4. D. Camarena-Martinez, M. Valtierra- Rodriguez, A. Garcia-Perez, et al., Empirical mode decomposition and neural networks on FPGA for fault diagnosis in induction motors. Sci. World J., 908140 (2014)

  5. X. Chen, X. Xu, A. Liu et al., The use of multivariate EMD and CCA for Denoising muscle Artifacts from few-channel EEG recordings. IEEE Trans. Instrum. Meas. 67(2), 359–370 (2018)

    Article  Google Scholar 

  6. J.B. Cloete, T. Stander, D.N. Wilke, Parametric circuit fault diagnosis through oscillation-based testing in analogue circuits: statistical and deep learning approaches. IEEE Access 10, 15671–15680 (2022)

    Article  Google Scholar 

  7. Y. Deng, G. Chai, Soft fault feature extraction in nonlinear Analog circuit fault diagnosis. Circuits Syst. Signal Process 35, 4220–4248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Y. Deng, N. Liu, Soft fault diagnosis in analog circuits based on bispectral models. J. Electron Test 33(5), 543–557 (2017)

    Article  Google Scholar 

  9. Y. Deng, Y. Shi, W. Zhang, Diagnosis of incipient faults in weak nonlinear analog circuits. Circuits Syst. Signal Proc. 5, 2151–2170 (2013)

    MathSciNet  Google Scholar 

  10. Y. Deng, Y. Shi, W. Zhang, An approach to locate parametric faults in nonlinear analog circuits. IEEE Trans. Instrum. Meas. 61(2), 358–367 (2012)

    Article  Google Scholar 

  11. T. Gao, J. Yang, S. Jiang et al., A novel fault diagnosis method for analog circuits based on conditional variational neural networks. Circuits Syst. Signal Process 40(6), 2609–2633 (2021)

    Article  Google Scholar 

  12. W. He, Y. He, B. Li, Generative adversarial networks with comprehensive wavelet feature for fault diagnosis of Analog circuits. IEEE Trans. Instrum. Meas. 69(9), 6640–6650 (2020)

    Article  Google Scholar 

  13. W. He, Y. He, B. Li, C. Zhang, A Naive-bayes-based fault diagnosis approach for Analog circuit by using image-oriented feature extraction and selection technique. IEEE Access 8, 5065–5079 (2020)

    Article  Google Scholar 

  14. W. He, Y. He, B. Li, C. Zhang, Analog circuit fault diagnosis via joint cross-wavelet singular entropy and parametrict-SNE. Entropy 20(8), 604–614 (2018)

    Article  Google Scholar 

  15. N.E. Huang, S.R. Long et al., The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Roy. Soc. 454(1971), 903–995 (1998)

    Article  MATH  Google Scholar 

  16. Z. Jia, Z. Liu, Y. Gan, C.M. Vong, M. Pecht, A deep forest-based fault diagnosis scheme for electronics-rich analog circuit systems. IEEE Trans. Industr. Electron. 68(10), 10087–10096 (2021)

    Article  Google Scholar 

  17. R. Kodagunturi, E. Bradley, K. Maggard, C. Stroud, Bechmark circuits for analog and mixed-signal testing. Southeastcon’99 Proc of IEEE Kentuchy 217–220 (1999)

  18. H. Li, H. Gao, P. Shi, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Li, J. Wang, H.K. Lam, Q. Zhou, H. Du, Adaptive sliding mode control for interval type-2 fuzzy systems. IEEE Trans. Syst. Man Cybern. Syst. 46(12), 1654–1663 (2016)

    Article  Google Scholar 

  20. M. Liu, P. Shi, L. Zhang, X. Zhao, Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Trans. Circuits Syst. I Regul. Pap. 11, 2755–2764 (2011)

    Article  MATH  Google Scholar 

  21. Y. Liu, Z. Wang, X. He et al., Filtering and fault detection for nonlinear systems with polynomial approximation. Automatica 54, 348–359 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Luo, W. Lu, Y. Wang et al., A new test point selection method for analog continuous parameter fault. J. Electron. Test. 33(3), 339–352 (2017)

    Article  Google Scholar 

  23. Q. Ma, Y. He, F. Zhou et al., Test point selection method for analog circuit fault diagnosis based on similarity coefficient. Math. Probl. Eng. 2018(1), 9714206 (2018)

    Google Scholar 

  24. Y. Qin, X. Shi, L. Zhao, Two-channel CNN model for analog circuit fault diagnosis. Adv. Guid. 845, 2140–2150 (2023)

    Google Scholar 

  25. HG. Stratigopoulos, Machine learning support for diagnosis of analog circuits. machine learning support for fault diagnosis of system-on-chip (2023)

  26. H. Tao, L. Cheng, J. Qiu, V. Stojanovic, Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic. Meas. Sci. Technol. 33, 115005 (2022)

    Article  Google Scholar 

  27. H. Tao, J. Qiu, Y. Chen, V. Stojanovic, L. Cheng, Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. J. Franklin Inst. 360, 1454–1477 (2023)

    Article  MATH  Google Scholar 

  28. R. Valles-Novo, R.M.J. de Jesus, J.M. Ramirez-Cortes, H. Peregrina-Barreto, R. Morales-Caporal, Empirical mode decomposition analysis for broken-bar detection on squirrel cage induction motors. IEEE Trans. Instrum. Meas. 64(5), 1118–1128 (2014)

    Article  Google Scholar 

  29. G.N. Watson, Notes on generating functions of polynomials: (2) hermite polynomials. J. Londn. Math. Soc. 1–8(3), 194–199 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  30. C. Yang, Multiple soft fault diagnosis of analog filter circuit based on genetic algorithm. IEEE Access 8, 8193–8201 (2020)

    Article  Google Scholar 

  31. H. Yang, C. Meng, C. Wang, Data-driven feature extraction for Analog circuit fault diagnosis using 1-D convolutional neural network. IEEE Access 8, 18305–18315 (2020)

    Article  Google Scholar 

  32. Y. Yang, L. Wang, H. Chen et al., An end-to-end denoising Autoencoder-based deep neural network approach for fault diagnosis of Analog circuit. Analog Integr. Circ. Sig. Process 107(3), 605–616 (2021)

    Article  Google Scholar 

  33. M. Zeller, W. Kellermann, Fast and robust adaptation of DFT-domain Volterra filters in diagonal coordinates using iterated coefficient updates. IEEE Trans. Signal Process. 58(3), 1589–1604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Zhang, B. Jiang, X.G. Yan et al., Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device. ISA Trans. 63, 49–59 (2016)

    Article  Google Scholar 

  35. Q. Zhang, X. Song, S. Song, V. Stojanovic, Finite-Time sliding mode control for singularly perturbed PDE systems. J. Franklin Inst. 360(2), 841–861 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  36. X. Zhang, Sensor bias fault detection and isolation in a class of nonlinear uncertain systems using adaptive estimation. IEEE Trans. Autom. Control 56(5), 1220–1226 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Zhao, X. Liu, B. Zhang et al., A novel approach for analog circuit fault diagnosis based on deep belief network. Measurement 121, 170–178 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and the editors for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Zeng.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Zeng, X., Zhang, D. et al. Analog Circuit Fault Diagnosis Based on the Fractional Sliding Model Observer. Circuits Syst Signal Process 42, 6460–6480 (2023). https://doi.org/10.1007/s00034-023-02432-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02432-0

Keywords

Navigation