Skip to main content
Log in

A PRBS Generator Using Merged XOR-D Flip-Flop as Building Blocks

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a pseudo-random binary sequence (PRBS) generator using merged XOR-D flip-flop as building blocks. The proposed architecture uses differential cascode voltage switch logic (DCVSL)-based dynamic XOR gate. The cross-coupled architecture of the pull-up network creating positive feedback in the DCVSL XOR gate is used as a latch by adding a transistor to apply a clock signal. This arrangement reduces the requirement of one latch in a master–slave D flip-flop (MS-DFF) from each lane. It reduces the area occupied in the layout and power requirements for the PRBS generator. The post-layout simulation for the PRBS generator operating at 5 Gb/s is performed in the 65 nm CMOS technology with a 1 V supply voltage. The proposed PRBS generator requires 2.4 mW of power. The jitter is 5.6 ps for the worst-case output of the proposed PRBS generator. In the proposed merged XOR-D flip-flop, there is an improvement of 33.3%, 27.4%, 29.1%, and 31.2% in power, area, maximum operating frequency, and the number of transistors, respectively, compared to when both XOR gate and D flip-flop are used separately. The figure of merit is improved by 14.8% for the proposed PRBS generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. A. Amirany, K. Jafari, M.H. Moaiyeri, True random number generator for reliable hardware security modules based on a neuromorphic variation-tolerant spintronic structure. IEEE Trans. Nanotechnol. 19, 784–791 (2020). https://doi.org/10.1109/TNANO.2020.3034818

    Article  Google Scholar 

  2. C.-H. Chang, J. Gu, M. Zhang, A review of 018\(\mu \)m full adder performances for tree structured arithmetic circuits. IEEE Trans. Very Large Scale /Integr. (VLSI) Syst. 13(6), 686–695 (2005). https://doi.org/10.1109/TVLSI.2005.848806

    Article  Google Scholar 

  3. M. S. Chen, C. K. K. Yang, A low-power highly multiplexed parallel PRBS generator. In: Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, (2012), pp. 1–4, https://doi.org/10.1109/CICC.2012.6330664

  4. R. Clarke, M.R. LeRoy, S. Raman, T.G. Neogi, R.P. Kraft, J.F. McDonald, 140 Gb/s Serializer using clock doublers in 90 nm SiGe technology. IEEE J. Solid State Circuits 50(11), 2703–2713 (2015). https://doi.org/10.1109/JSSC.2015.2472600

    Article  Google Scholar 

  5. R. Dayalu, Low-voltage low-power CMOS full adder. IET Proc. Circuits Dev. Syst. 148(1), 19–24 (2001). https://doi.org/10.1049/ip-cds:20010170

    Article  Google Scholar 

  6. S. Goel, A. Kumar, M.A. Bayoumi, Design of robust, energy efficient full adders for deep-submicrometer design using hybrid-CMOS logic style. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(12), 1309–1321 (2006). https://doi.org/10.1109/TVLSI.2006.887807

    Article  Google Scholar 

  7. P.K. Govindaswamy, V.S.R. Pasupureddi, A 2\(^7\)-1, 20-Gb/s, Low-power, charge-steering half-rate PRBS generator in 1.2 V, 65 nm CMOS. Circuits Syst. Signal Proc. 40, 5553–5571 (2021). https://doi.org/10.1007/s00034-021-01732-7

    Article  Google Scholar 

  8. P. K. Govindaswamy, V. S. R. Pasupureddi, A 2\(^7\)-1 low-power half-rate 16-Gb/s charge-mode prbs generator in 1.2V, 65nm CMOS, In: 2020 IEEE Computer Society Annual Symp. on VLSI (ISVLSI), (2020), pp. 212–215, https://doi.org/10.1109/ISVLSI49217.2020.00046

  9. J. Hallin, T. Kjellberg, T. Swahn, A 165-Gb/s 4:1 multiplexer in InP DHBT technology, In: IEEE Compound Semiconductor International Circuit Symposium 2005. CSIC ’05., Palm Springs, CA, USA, (2005), pp. 4 . https://doi.org/10.1109/CSICS.2005.1531833

  10. L. Heller, W. Griffin, J. Davis, N. Thoma, Cascode voltage switch logic: a differential CMOS logic family, In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, (1984), pp. 16–17, https://doi.org/10.1109/ISSCC.1984.1156629

  11. J. Hu, Z. Zhang, Q. Pan, A \(15\, Gb/s 00037\, mm^{2}\) 0019 pJ/Bit full-rate programmable multi-pattern pseudo-random binary sequence generator, IEEE Trans. Circuits Syst. II Exp. Briefs 67(9), 1499–1503 (2020). https://doi.org/10.1109/TCSII.2020.3008567

    Article  Google Scholar 

  12. J. Kandpal, A. Tomar, M. Agarwal, K.K. Sharma, High-Speed Hybrid-Logic Full Adder Using High-Performance 10-T XOR-XNOR cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(6), 1413–1422 (2020). https://doi.org/10.1109/TVLSI.2020.2983850

    Article  Google Scholar 

  13. M.M. Khafaji, R. Henker, F. Ellinger, A 1 pJ/bit 80 Gb/s 2\(^{15}\)-1 PRBS generator with a modified Cherry-Hooper output driver. IEEE J. Solid-State Circuits 54(7), 2059–2069 (2019). https://doi.org/10.1109/JSSC.2019.2904172

    Article  Google Scholar 

  14. F. Khodayari, A. Amirany, M.H. Moaiyeri, K. Jafari, A variation-aware ternary true random number generator using magnetic tunnel junction at subcritical current regime. IEEE Trans. Magn. 59(3), 1–8 (2023). https://doi.org/10.1109/TMAG.2022.3233891

    Article  Google Scholar 

  15. J. K. Kim, J. Kim and D.K. Jeong “A 20 Gb/s full-rate 2\(^7\)-1 PRBS generator integrated with 20 GHz PLL in 0.13 \(\mu \)m CMOS”, In: IEEE Asian Solid-State Circuits Confernece, (2008). https://doi.org/10.1109/ASSCC.2008.4708768

  16. E. Laskin, S.P. Voinigescu, A 60 mW per lane, 4\(\times \)23 Gb/s 2\(^7\)-1 PRBS generator. IEEE J. Solid State Circuits 41(10), 2198–2208 (2006). https://doi.org/10.1109/JSSC.2006.878112

    Article  Google Scholar 

  17. M. Morsali, M.H. Moaiyeri, R. Rajaei, A process variation resilient spintronic true random number generator for highly reliable hardware security applications. Microelectron. J. 127, 105606 (2022)

    Article  Google Scholar 

  18. P.K. Meher, Extended sequential logic for synchronous circuit optimization and its applications. IEEE Trans. Comput. Aid. Des Int. Circuits Syst. 28(4), 469–477 (2009). https://doi.org/10.1109/TCAD.2009.2014006

    Article  Google Scholar 

  19. H. Naseri, S. Timarchi, Low-power and fast full adder by exploring new XOR and XNOR gates. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(8), 1481–1493 (2018). https://doi.org/10.1109/TVLSI.2018.2820999

    Article  Google Scholar 

  20. H.J. Ng, R. Feger, A. Stelzer, A fully-integrated 77-GHz pseudo-random noise coded Doppler radar sensor with programmable sequence generators in SiGe technology, In: IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, USA, (2014), pp. 1–4, https://doi.org/10.1109/MWSYM.2014.6848382

  21. J.J. O’Reilly, Series-parallel generation of m-sequences. Radio Electron. Eng. 45(4), 171–176 (1975). https://doi.org/10.1049/ecej:19960205

    Article  Google Scholar 

  22. S. Ray, M.M. Hella, A 10 Gb/s Inductorless AGC amplifier With 40 dB linear variable gain control in 0.13 \(\mu \)m CMOS. IEEE J. Solid-State Circuits 51(2), 440–456 (2016). https://doi.org/10.1109/JSSC.2015.2496782

    Article  Google Scholar 

  23. B. Razavi, The StrongARM latch [a circuit for all seasons]. IEEE Solid State Circuits Mag. 7(2), 12–17 (2015). https://doi.org/10.1109/MSSC.2015.2418155

    Article  Google Scholar 

  24. M. Sakare, A Quarter-Rate 2\(^7\)-1 pseudo-random binary sequence generator using interleaved architecture, In: 2016 29th International Conference on VLSI Design and 2016 15th International Conference on Embedded Systems (VLSID), (2016), pp. 196–201, https://doi.org/10.1109/VLSID.2016.35

  25. M. Sakare, A power and area efficient architecture of a PRBS generator with multiple outputs. IEEE Trans. Circuits Syst. II Exp. Briefs 64(8), 927–931 (2017). https://doi.org/10.1109/TCSII.2016.2641582

    Article  Google Scholar 

  26. J. Savoj, A.A. Abbasfar, A. Amirkhany, B.W. Garlepp, M.A. Horowitz, A new technique for characterization of digital-to-analog converters in high-speed systems, In: IEEE Design, Automation & Test in Europe Conference & Exhibition, (2007) https://doi.org/10.1109/DATE.2007.364630

  27. G. Scotti, D. Bellizia, A. Trifiletti, G. Palumbo, Design of low voltage high-speed cml d-latches in nanometer CMOS technologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. (2017). https://doi.org/10.1109/TVLSI.2017.2750207

    Article  Google Scholar 

  28. G. Scotti, D. Bellizia, A. Trifiletti, G. Palumbo, Design of low-voltage high-speed cml d-latches in nanometer CMOS technologies. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(12), 3509–3520 (2017). https://doi.org/10.1109/TVLSI.2017.2750207

    Article  Google Scholar 

  29. M. Singh, M. Sakare, S. Gupta, Testing of high-speed DACs using PRBS generation with Alternate-Bit-Tapping, In: Design, Automation & Test in Europe, Grenoble, France, (2011), pp. 1–6, https://doi.org/10.1109/DATE.2011.5763066

  30. M.K. Singh, P. Singh, D.M. Das and M. Sakare, A low power 8 \(\times \) 2\(^7-1\) PRBS generator using Exclusive-OR gate merged D flip-flops, In: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), Lansing, MI, USA, (2021), pp. 779–782, https://doi.org/10.1109/MWSCAS47672.2021.9531827

  31. U. Singh, Lijun Li, M.M. Green, A 34Gb, s 2:1 MUX, CMU based on a distributed amplifier using 0.18, spl mu, m CMOS, In: Digest of Technical Papers, Symposium on VLSI Circuits, Kyoto. Japan 2005, pp. 132–135 (2005). https://doi.org/10.1109/VLSIC.2005.1469350

  32. K.J. Sham, S. Bommalingaiahnapallya, M.R. Ahmadi, R. Harjani, A 3 \(\times \) 5 Gb/s multilane low-power 0.18 \(\mu {{m}}^2\) CMOS pseudo random bit sequence generator, IEEE Trans. Circuits Syst. II Exp. Briefs 55(5), 432–436 (2008). https://doi.org/10.1109/TCSII.2007.912696

    Article  Google Scholar 

  33. T. Swahn, J. Hallin, T. Kjellberg, Design and Test of InP DHBT ICs for a 100 Gb/s demonstrator system, In: International Conference on Indium Phosphide and Related Materials Conference Proceedings, Princeton, NJ, USA, (2006), pp. 79–84, https://doi.org/10.1109/ICIPRM.2006.1634116

  34. D.Z. Turker, S.P. Khatri, E. Sánchez-Sinencio, A DCVSL delay cell for fast low power frequency synthesis applications. IEEE Trans. Circuits Syst. I: Reg. Papers 58(6), 1225–1238 (2011). https://doi.org/10.1109/TCSI.2010.2103170

    Article  MathSciNet  Google Scholar 

  35. M.A. Valashani, S. Mirzakuchaki, A novel fast, low-power and high-performance XOR-XNOR cell, In: IEEE International Symposium on Circuits and Systems (ISCAS), (2016), pp. 694–697, https://doi.org/10.1109/ISCAS.2016.7527335

  36. A.J. Vishnani, M.V. Dave, M.S. Baghini, D.K. Sharma, A fully on-chip throughput measurement system for multi-gigabits/s on-chip interconnects, In: 3rd Asia Symposium on Quality Electronic Design (ASQED), Kuala Lumpur, Malaysia, (2011), pp. 119–124, https://doi.org/10.1109/ASQED.2011.6111713

  37. Y. Wang, M.D. Wei, R. Negra, Low Power, 11.8 Gbps 2\(^7\)-1 Pseudo-random bit sequence generator in 65 nm standard CMOS, In: 2019 26th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), (2019), pp. 318–321, https://doi.org/10.1109/ICECS46596.2019.8965019

  38. M. Yektaei, M.B.G. Ghoushchi, PDP and TPD flexible MCML and MTCML ultralow-power and high-speed structures for wireless and wireline applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 28(8), 1782–1795 (2020). https://doi.org/10.1109/TVLSI.2020.2996544

    Article  Google Scholar 

  39. K. Zhu, V. Saxena, From design to test: a high-speed PRBS. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(10), 2099–2107 (2018). https://doi.org/10.1109/TVLSI.2018.2834373

    Article  Google Scholar 

Download references

Funding

This work is supported by Government of India under SERB-CRG (CRG/2021/008273) scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Kumar Singh.

Ethics declarations

Conflicts of interest

We have no conflict of interests/competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.K., Singh, P., Chichhula, U. et al. A PRBS Generator Using Merged XOR-D Flip-Flop as Building Blocks. Circuits Syst Signal Process 42, 6813–6828 (2023). https://doi.org/10.1007/s00034-023-02425-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02425-z

Keywords

Navigation