Skip to main content
Log in

On the Boundaries of the Realization of Single Input Single Element-Controlled Universal Memelement Emulator

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper discusses in detail the inability of a circuit designer to design a single input single element-controlled universal memelement emulator. A Single input Single element-controlled universal memelement emulator would be such a configuration that can provide the realization of any of the three memelements (Memristor/Memcapacitor/Meminductor) by taking a circuit element as inductor (L), Capacitor (C) or Resistor (R) with the same input port. The analysis shows that no such circuit configuration can be built to realize such a highly flexible universal memelement emulator. It is found that by using such structures, only two ideal memelements can be realized at maximum. If these circuit structures are used to realize the remaining third memelement, then, the resulting element comes out to be a non-ideal memelement. Two circuit configurations to demonstrate this theory are also included for both charge-controlled and flux-controlled memelement emulation based on the approaches shown in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.T. Abuelmaatti, Z.J. Khalifa, A new memristor emulator and its application in digital modulation. Analog Integrated Circuits Signal Process. 80(3), 577–584 (2014). https://doi.org/10.1007/s10470-014-0364-3

    Article  Google Scholar 

  2. Y. Babacan, An operational transconductance amplifier-based memcapacitor and meminductor. Istanb. Univ. J. Electr. Electron. Eng. 18(1), 36–38 (2018). https://doi.org/10.5152/iujeee.2018.1806

    Article  MathSciNet  Google Scholar 

  3. Y. Babacan, A. Yesil, F. Kacar, Memristor emulator with tunable characteristic and its experimental results. AEU Int. J. Electron. Commun. 81, 99–104 (2017). https://doi.org/10.1016/j.aeue.2017.07.012

    Article  Google Scholar 

  4. B. Bao, Z. Ma, J. Xu, Z. Liu, Q. Xu, A simple memristor chaotic circuit with complex dynamics. Int. J. Bifurc. Chaos 21(09), 2629–2645 (2011). https://doi.org/10.1142/s0218127411029999

    Article  MATH  Google Scholar 

  5. B.-C. Bao, J.-P. Xu, G.-H. Zhou, Z.-H. Ma, L. Zou, Chaotic memristive circuit: equivalent circuit realization and dynamical analysis. Chin. Phys. B 20(12), 120502 (2011). https://doi.org/10.1088/1674-1056/20/12/120502

    Article  Google Scholar 

  6. K. Bhardwaj, M. Srivastava, New multiplier-less compact tunable charge-controlled memelement emulator using grounded passive elements. Circuits Syst. Signal Process. 41(5), 2429–2465 (2021). https://doi.org/10.1007/s00034-021-01895-3

    Article  Google Scholar 

  7. K. Bhardwaj, M. Srivastava, New electronically adjustable memelement emulator for realizing the behaviour of fully-floating meminductor and memristor. Microelectron. J. 114, 1051 (2021). https://doi.org/10.1016/j.mejo.2021.105126

    Article  Google Scholar 

  8. K. Bhardwaj, M. Srivastava, On the investigation of frequency-related fingerprints of meminductor/capacitor and their duals realized by circuit emulators. Radioengineering 31(3), 374–381 (2022). https://doi.org/10.13164/re.2022.0374

    Article  Google Scholar 

  9. K. Bhardwaj, M. Srivastava, New grounded passive elements-based external multiplier-less memelement emulator to realize the floating meminductor and memristor. Analog Integr. Circuits Signal Process. 110(3), 409–429 (2022). https://doi.org/10.1007/s10470-021-01976-y

    Article  Google Scholar 

  10. D. Biolek, V. Biolková, Z. Kolka, J. Dobeš, Analog emulator of genuinely floating memcapacitor with piecewise-linear constitutive relation. Circuits Syst. Signal Process. 35(1), 43–62 (2015). https://doi.org/10.1007/s00034-015-0067-8

    Article  MathSciNet  Google Scholar 

  11. Z.G. Çam Taşkıran, M. Sağbaş, U.E. Ayten, H. Sedef, A new universal mutator circuit for memcapacitor and meminductor elements. AEU Int. J. Electron. Commun. 119, 153180 (2020). https://doi.org/10.1016/j.aeue.2020.153180

    Article  Google Scholar 

  12. L. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/tct.1971.1083337

    Article  Google Scholar 

  13. F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter. Electron. Lett. 48(14), 824 (2012). https://doi.org/10.1049/el.2012.1480

    Article  Google Scholar 

  14. T. Driscoll, Y.V. Pershin, D.N. Basov, M. Di Ventra, Chaotic memristor. Appl. Phys. A 102(4), 885–889 (2011). https://doi.org/10.1007/s00339-011-6318-z

    Article  Google Scholar 

  15. A.S. Elwakil, M.E. Fouda, A.G. Radwan, A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans. Circuits Syst. II Express Briefs 60(8), 487–491 (2013). https://doi.org/10.1109/tcsii.2013.2268376

    Article  Google Scholar 

  16. G. Ferri, N.C. Guerrini, Low-Voltage Low-Power CMOS Current Conveyors (Kluwer Academic Publishers, Boston, 2003)

    Google Scholar 

  17. M.E. Fouda, A.G. Radwan, Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48(23), 1454 (2012). https://doi.org/10.1049/el.2012.3151

    Article  Google Scholar 

  18. K. Kaewdang, K. Kumwachara, W. Surakampontom, Electronically tunable floating CMOS resistor using OTA, in IEEE International Symposium on Communications and Information Technology, 2005. ISCIT (2005).https://doi.org/10.1109/iscit.2005.1566957

  19. Z. Li, Y. Zeng, M. Ma, A novel floating memristor emulator with minimal components. Act. Passiv. Electron. Compon. 2017, 1–12 (2017). https://doi.org/10.1155/2017/1609787

    Article  Google Scholar 

  20. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 20(05), 1335–1350 (2010). https://doi.org/10.1142/s0218127410026514

    Article  MATH  Google Scholar 

  21. R.K. Ranjan, N. Raj, N. Bhuwal, F. Khateb, Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. AEU Int. J. Electron. Commun. 82, 177–190 (2017). https://doi.org/10.1016/j.aeue.2017.07.039

    Article  Google Scholar 

  22. R.K. Ranjan, N. Rani, R. Pal, S.K. Paul, G. Kanyal, Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron. J. 60, 119–128 (2017). https://doi.org/10.1016/j.mejo.2016.12.004

    Article  Google Scholar 

  23. F.J. Romero et al., Memcapacitor emulator based on the Miller effect. Int. J. Circuit Theory Appl. 47(4), 572–579 (2019). https://doi.org/10.1002/cta.2604

    Article  Google Scholar 

  24. F.J. Romero, M. Escudero, A. Medina-Garcia, D.P. Morales, N. Rodriguez, Meminductor emulator based on a modified Antoniou’s Gyrator circuit. Electronics 9(9), 1407 (2020). https://doi.org/10.3390/electronics9091407

    Article  Google Scholar 

  25. M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Charge controlled meminductor emulator. JSTS J. Semicond. Technol. Sci. 14(6), 750–754 (2014). https://doi.org/10.5573/jsts.2014.14.6.750

    Article  Google Scholar 

  26. M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33(8), 2363–2383 (2014). https://doi.org/10.1007/s00034-014-9758-9

    Article  Google Scholar 

  27. C. Sánchez-López, L.E. Aguila-Cuapio, A 860 kHz grounded memristor emulator circuit. AEU Int. J. Electron. Commun. 73, 23–33 (2017). https://doi.org/10.1016/j.aeue.2016.12.015

    Article  Google Scholar 

  28. F. Setoudeh, M.M. Dezhdar, A new design and implementation of the floating-type charge-controlled memcapacitor emulator. Majlesi J. Telecommun. Devices (2020).

  29. P.K. Sharma, R.K. Ranjan, F. Khateb, M. Kumngern, Charged controlled mem-element emulator and its application in a chaotic system. IEEE Access 8, 171397–171407 (2020). https://doi.org/10.1109/access.2020.3024769

    Article  Google Scholar 

  30. X.-Y. Wang, A.L. Fitch, H.H.C. Iu, V. Sreeram, W.-G. Qi, Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin. Phys. B 21(10), 108501 (2012). https://doi.org/10.1088/1674-1056/21/10/108501

    Article  Google Scholar 

  31. S. Wen, Yi. Shen, Z. Zeng, Y. Cai, Chaos analysis and control in a chaotic circuit with a PWL memristor. Int. Conf. Inf. Sci. Technol. (2011). https://doi.org/10.1109/icist.2011.5765147

    Article  Google Scholar 

  32. S. Yaner, H. Kuntman, Fully CMOS memristor based chaotic circuit. Radioengineering 23, 1140–1149 (2014)

    Google Scholar 

  33. D. Yu, X. Zhao, T. Sun, H.H.C. Iu, T. Fernando, A simple floating mutator for emulating memristor, memcapacitor, and meminductor. IEEE Trans. Circuits Syst. II Express Briefs 67(7), 1334–1338 (2020). https://doi.org/10.1109/tcsii.2019.2936453

    Article  Google Scholar 

  34. F. Yuan, Y. Li, G. Wang, G. Dou, G. Chen, Complex dynamics in a memcapacitor-based circuit. Entropy 21(2), 188 (2019). https://doi.org/10.3390/e21020188

    Article  MathSciNet  Google Scholar 

  35. F. Yuan, Y. Deng, Y. Li, A multistable generalized meminductor with coexisting stable pinched hysteresis loops. Int. J. Bifurc. Chaos 30(02), 2050023 (2020). https://doi.org/10.1142/s0218127420500236

    Article  MathSciNet  Google Scholar 

  36. Q. Zhao, C. Wang, X. Zhang, A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit. Chaos Interdiscip. J. Nonlinear Sci. 29(1), 013141 (2019). https://doi.org/10.1063/1.5081076

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayank Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, K., Srivastava, M. On the Boundaries of the Realization of Single Input Single Element-Controlled Universal Memelement Emulator. Circuits Syst Signal Process 42, 6355–6366 (2023). https://doi.org/10.1007/s00034-023-02420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02420-4

Keywords

Navigation