Skip to main content
Log in

Rank-Awareness Sparse Blind Deconvolution Using Modulated Input

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents rank-awareness algorithms to solve sparse blind deconvolution using modulated input. We consider sparse blind deconvolution as a rank-one column-sparse matrix recovery problem, so the proposed algorithms can use both the rank-one property and the sparsity of the unknowns. Unknown input \(\varvec{s}\) is first multiplied by a random sign sequence \(\varvec{r}\) and then convolved with an arbitrary filter \(\varvec{h}\) to obtain the measurements \(\varvec{y}\). The unknown signal \(\varvec{s}\) is assumed to have a sparse representation. Sparse blind deconvolution using modulated input has unique applications, such as the blind calibration of the random demodulation system. When the number of measurements has satisfied certain conditions, blind deconvolution can be solved without considering signal sparsity. This paper mainly studies how to use signal sparsity to reduce the number of measurements required for sparse blind deconvolution. We propose two methods to solve this problem. The first method uses the \(\ell _1\)-norm regularization to promote the unknown signal to iterate in the direction of sparsity. The second method transforms the sparse blind deconvolution problem into a rank-one constrained block-sparse signal recovery problem, and we propose the rank-awareness sparse blind demodulation algorithm to solve it. Our proposed methods could effectively reduce the number of measurements required for sparse blind deconvolution. Under certain conditions, our proposed sparse blind deconvolution algorithms required 320 and 160 measurements, while 400 measurements were required when signal sparsity was not considered. The simulation results verify the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included directly in the text of this submitted manuscript. There are no additional external files with datasets.

References

  1. A. Ahmed, Blind deconvolution using modulated inputs. IEEE Trans. Signal Process. 68, 374–387 (2019). https://doi.org/10.1109/TSP.2019.2959218

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ahmed, B. Recht, J. Romberg, Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2013). https://doi.org/10.1109/TIT.2013.2294644

    Article  MathSciNet  MATH  Google Scholar 

  3. S.I. Amari, S.C. Douglas, A. Cichocki, H.H. Yang, Multichannel blind deconvolution and equalization using the natural gradient, in First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications (IEEE, 1997), pp. 101–104. https://doi.org/10.1109/SPAWC.1997.630083

  4. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006). https://doi.org/10.1109/TIT.2005.862083

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Cheng, W. Dai, Short-and-sparse deconvolution via rank-one constrained optimization (ROCO), in ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2022), pp. 5882–5886. https://doi.org/10.1109/ICASSP43922.2022.9747176

  6. A. Curtis, P. Gerstoft, H. Sato, R. Snieder, K. Wapenaar, Seismic interferometry-turning noise into signal. Lead. Edge 25(9), 1082–1092 (2006). https://doi.org/10.1190/1.2349814

    Article  Google Scholar 

  7. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  8. Y.C. Eldar, P. Kuppinger, H. Bolcskei, Block-sparse signals: Uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010). https://doi.org/10.1109/TSP.2010.2044837

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Garnier, G. Papanicolaou, Passive synthetic aperture imaging. SIAM J. Imaging Sci. 8(4), 2683–2705 (2015). https://doi.org/10.1137/15M1019696

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Guan, X. Wang, W. Wang, L. Huang, Sparse blind speech deconvolution with dynamic range regularization and indicator function. Circuits Syst. Signal Process. 36(10), 4145–4160 (2017). https://doi.org/10.1007/s00034-017-0505-x

    Article  Google Scholar 

  11. S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, R. Baraniuk, Analog-to-information conversion via random demodulation, in 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software (2006), pp. 71–74. https://doi.org/10.1109/DCAS.2006.321036

  12. D. Krishnan, T. Tay, R. Fergus, Blind deconvolution using a normalized sparsity measure, in CVPR 2011 (2011), pp. 233–240. https://doi.org/10.1109/CVPR.2011.5995521

  13. H.W. Kuo, Y. Zhang, Y. Lau, J. Wright, Geometry and symmetry in short-and-sparse deconvolution. SIAM J. Math. Data Sci. 2(1), 216–245 (2020). https://doi.org/10.1137/19m1237569

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Li, Y. Bresler, Multichannel sparse blind deconvolution on the sphere. IEEE Trans. Inf. Theory 65(11), 7415–7436 (2019). https://doi.org/10.1109/TIT.2019.2928576

    Article  MathSciNet  MATH  Google Scholar 

  15. Q. Qu, X. Li, Z. Zhu, Exact recovery of multichannel sparse blind deconvolution via gradient descent. SIAM J. Imaging Sci. 13(3), 1630–1652 (2020). https://doi.org/10.1137/19M1291327

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Repetti, M.Q. Pham, L. Duval, É. Chouzenoux, J.C. Pesquet, Euclid in a taxicab: Sparse blind deconvolution with smoothed \({\ell _1}/{\ell _2}\) regularization. IEEE Signal Process. Lett. 22(5), 539–543 (2015). https://doi.org/10.1109/LSP.2014.2362861

    Article  Google Scholar 

  17. L. Shi, Y. Chi, Manifold gradient descent solves multi-channel sparse blind deconvolution provably and efficiently. IEEE Trans. Inf. Theory. 67(7), 4784–4811 (2021). https://doi.org/10.1109/TIT.2021.3075148

    Article  MathSciNet  MATH  Google Scholar 

  18. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2009). https://doi.org/10.1109/TIT.2009.2034811

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Wang, Y. Chi, Blind deconvolution from multiple sparse inputs. IEEE Signal Process. Lett. 23(10), 1384–1388 (2016). https://doi.org/10.1109/LSP.2016.2599104

    Article  MathSciNet  Google Scholar 

  20. H. Zhang, D. Wipf, Y. Zhang, Multi-image blind deblurring using a coupled adaptive sparse prior, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2013), pp. 1051–1058. https://doi.org/10.1109/CVPR.2013.140

  21. H. Zhang, D. Wipf, Y. Zhang, Multi-observation blind deconvolution with an adaptive sparse prior. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1628–1643 (2014). https://doi.org/10.1109/TPAMI.2013.241

    Article  Google Scholar 

  22. J. Zhang, Y. Jiang, H. Luo, S. Yin, Prediction of material removal rate in chemical mechanical polishing via residual convolutional neural network. Control Eng. Pract. 107, 104,673 (2021). https://doi.org/10.1016/j.conengprac.2020.104673

  23. J. Zhang,Y. Jiang, S. Wu, X. Li, H. Luo, S. Yin, Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism. Reliab. Eng. Syst. Saf. 221, 108297 (2022). https://doi.org/10.1016/10.1016/j.ress.2021.108297

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 61701138, the Hei Long Jiang Postdoctoral Foundation under Grant LBH-Z16087, and the Natural Science Foundation of Heilongjiang Province of China under Grant LH2022F019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyan Qiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Cao, Q., Su, Y. et al. Rank-Awareness Sparse Blind Deconvolution Using Modulated Input. Circuits Syst Signal Process 42, 6684–6700 (2023). https://doi.org/10.1007/s00034-023-02415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02415-1

Keywords

Navigation