Skip to main content
Log in

A New Ultra-Low-Power High-Order Universal OTA-C Filter Based on CMOS Double Inverters in the Subthreshold Region

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new ultra-low-power double-inverter-based and multi-mode, high-order universal OTA-C filter is presented. The proposed circuit is designed based on the use of subthreshold biased double inverters as OTA blocks which leads to the reduction of power consumption as well as the chip size area. Furthermore, the grounded capacitors are employed in the proposed circuit to properly reduce the noise and parasitic effects of the proposed circuit. Moreover, another advantage of the proposed filter circuit is the low sensitivity of the proposed circuit performance to the values of the active and passive elements in the circuit. However, the proposed design is simulated in CADENCE using 0.18 µm CMOS technology parameters. As simulation results show, the proposed low-power filter has very good performance that can be considered as a proper universal OTA-C filter for ultra-low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. O. Abdelfattah, G.W. Roberts, I. Shih, Y.-C. Shih, An ultra-low-voltage CMOS process-insensitive self-biased OTA with rail-to-rail input range. IEEE Trans. Circuits Syst. I 62(10), 2380–2390 (2015). https://doi.org/10.1109/TCSI.2015.2469011

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Abdolmaleki, M. Dousti, M.B. Tavakoli, Design and simulation of fourth order low-pass Gm-C filter with novel auto-tuning circuit in 90 nm CMOS. Analog Integr. Circuits Signal Process. 107, 451–461 (2021). https://doi.org/10.1007/s10470-020-01785-9

    Article  Google Scholar 

  3. M. Aghaei Jeshvaghani, M. Dolatshahi, A low-power multi-mode and multi-output high-order CMOS universal Gm-C filter. Analog Integr. Circuits Signal Process. 79, 95–104 (2014). https://doi.org/10.1007/s10470-013-0250-4

    Article  Google Scholar 

  4. D. Agrawal, S. Maheshwari, High-performance electronically tunable analog filter using a single EX-CCCII. Circuits Syst. Signal Process. 40, 1127–1151 (2021). https://doi.org/10.1007/s00034-020-01530-7

    Article  Google Scholar 

  5. O.I. Ahmed, H.M. Yassin, L.A. Said, C. Psychalions, A.G. Radwan, Implementation and analysis of tunable fractional-order band-pass filter of order 2α. Int. J. Electron. Commun. (AEÜ) 124, 153343 (2020). https://doi.org/10.1016/j.aeue.2020.153343

    Article  Google Scholar 

  6. S. Azhari, M. Shokoufi, A new structure for current-mode continuous time Gm-C filters. IJST Trans Electr Eng 35(1), 25–43 (2011)

    Google Scholar 

  7. H. Barthélemy, S. Meillére, J. Gaubert, N. Dehaese, S. Bourdel, OTA based on CMOS inverters and application in the design of tunable band pass filter. Analog Integr. Circuits Signal Process. 57, 169–178 (2008). https://doi.org/10.1007/s10470-008-9167-8

    Article  Google Scholar 

  8. D.R. Bhaskar, A. Raj, P. Kumar, Mixed-mode universal biquad filter using OTAs. J. Circuits Syst. Comput. 29(10), 2050162 (2020). https://doi.org/10.1142/S0218126620501625

    Article  Google Scholar 

  9. J.M. Carrillo, G. Torelli, M.A. Dominguez, J.F. Duque-Carrillo, On the input common-mode voltage range of CMOS bulk-driven Input stages. Int. J. Circ. Theor. Appl 39(6), 649–664 (2011). https://doi.org/10.1002/cta.667

    Article  Google Scholar 

  10. C.-M. Chang, C.-L. Hou, W.-Y. Chung, J.-W. Horng, C.-K. Tu, Analytical synthesis of high-order single-ended-input OTA-grounded C all-pass and band-reject filter structures. IEEE Trans. Circuits Syst. I 53(3), 489–498 (2006). https://doi.org/10.1109/TCSI.2005.859057

    Article  Google Scholar 

  11. C.-M. Chang, M.N.S. Swamy, Analytical synthesis and comparison of voltage-mode Nth-order OTA-C universal filter structures. Int. J. Circ. Theor. Appl. 40(5), 421–454 (2012). https://doi.org/10.1002/cta.733

    Article  Google Scholar 

  12. H.-P. Chen, Y.-Z. Liao, W.-T. Lee, Tunable mixed-mode OTA-C universal filter. Analog Integr. Circuits Signal Process. 58, 135–141 (2009). https://doi.org/10.1007/s10470-008-9228-z

    Article  Google Scholar 

  13. T. Dostal, All-Pass filters in current mode. Radio Eng. 14(3), 48–53 (2005)

    Google Scholar 

  14. T. Dostal, Filters with multi-loop feedback structure in current mode. Radioengineering 12(3), 6–11 (2003)

    Google Scholar 

  15. M.U. Hasan, Y. Zhu, Y. Sun, Oscillation-based DFT for second-order bandpass OTA-C filters. Circuits Syst. Signal Process. 37, 1807–1824 (2018). https://doi.org/10.1007/s00034-017-0648-9

    Article  Google Scholar 

  16. M. Hasan, Y. Zhu, Y. Sun, Design for testability of high-order OTA-C filters. Int. J. Circ. Theor. Appl. 44(10), 1859–1873 (2016). https://doi.org/10.1002/cta.2200

    Article  Google Scholar 

  17. S. Kapoulea, C. Psychalinos, A.S. Elwakil, Power law filters: a new class of fractional-order filters without a fractional-order Laplacian operator. Int. J. Electron. Commun. (AEÜ) 129, 153537 (2021). https://doi.org/10.1016/j.aeue.2020.153537

    Article  Google Scholar 

  18. L. Langhammer, J. Dvorak, R. Sotner, J. Jerabek, Electronically tunable fully-differential fractional-order low-pass filter. Elektronika IR Elektrotechnika 23(3), 47–54 (2017). https://doi.org/10.5755/j01.eie.23.3.18332

    Article  Google Scholar 

  19. C.-N. Lee, C.-M. Chang, High-order mixed-mode OTA-C universal filter. Int. J. Electron. Commun. (AEÜ) 63(6), 517–521 (2009). https://doi.org/10.1016/j.aeue.2008.04.004

    Article  Google Scholar 

  20. S.-Y. Lee, C.-J. Cheng, Systematic design and modeling of a OTA-C filter for portable ECG detection. IEEE Trans. Biomed. Circuits Syst. 3(1), 53–64 (2009). https://doi.org/10.1109/TBCAS.2008.2007423

    Article  Google Scholar 

  21. Z. Liu, Y. Tan, H. Li, H. Jiang, J. Liu, H. Liao, A 0.5-V 3.69-nW complementary source-follower-C based low-pass filter for wearable biomedical applications. IEEE Trans. Circuits Syst. I 67(12), 4370–4381 (2020). https://doi.org/10.1109/TCSI.2020.2995351

    Article  Google Scholar 

  22. H. Liu, X. Zhu, M. Lu, Y. Sun, K. Yeo, Design of reconfigurable dB-linear variable-gain amplifier and switchable-order gm-C filter in 65-nm CMOS technology. IEEE Trans. Microw. Theory Tech. 67(12), 5148–5158 (2019). https://doi.org/10.1109/TMTT.2019.2947668

    Article  Google Scholar 

  23. T.-Y. Lo, C.-C. Hung, A 1 GHz equiripple low-pass filter with a high-speed automatic tuning scheme. IEEE Trans. Very Large Scale Integr. VLSI Syst. 19(2), 175–181 (2011). https://doi.org/10.1109/TVLSI.2009.2034527

    Article  Google Scholar 

  24. M. Masud, A. Bin A’ain, I.A. Khan, N. Shaikh-Husin, CNTFET based voltage mode MISO active only biquadratic filter for multi-GHz frequency applications. Circuits Syst. Signal Process. 40, 4721–4740 (2021). https://doi.org/10.1007/s00034-021-01699-5

    Article  Google Scholar 

  25. A. Namdari, M. Dolatshahi, A new ultra low-power, universal OTA-C filter in subthreshold region using bulk-drive technique. Int. J. Electron. Commun. (AEÜ) 82, 458–466 (2017). https://doi.org/10.1016/j.aeue.2017.09.020

    Article  Google Scholar 

  26. A. Namdari, M. Dolatshahi, Design of a low-voltage and low-power, reconfigurable universal OTA-C filter. Analog Integr. Circuits Signal Process. (2022). https://doi.org/10.1007/s10470-022-01996-2

    Article  Google Scholar 

  27. C.-S. Park, R. Schaumann, A high-frequency CMOS linear transconductance element. IEEE Trans. Circuits Syst. 33(11), 1132–1138 (1986). https://doi.org/10.1109/TCS.1986.1085859

    Article  Google Scholar 

  28. A. Pirmohammadi, M.H. Zarifi, A low power tunable Gm-C filter based on double CMOS inverters in 0.35 µm. Analog Integr. Circuits Signal Process. 71, 473–479 (2012). https://doi.org/10.1007/s10470-011-9710-x

    Article  Google Scholar 

  29. V.S. Rajan, K.H. Kishore, R. Sanjay, S. Kumaravel, B. Venkataramani, A novel programmable attenuator based low Gm-OTA for biomedical applications. Microelectron. J. 97, 104721 (2020). https://doi.org/10.1016/j.mejo.2020.104721

    Article  Google Scholar 

  30. V. Rajan, B. Venkataramani, Design of low power, programmable low-Gm OTAs and Gm-C filters for biomedical applications. Analog Integr. Circuits Signal Process 107, 389–409 (2021). https://doi.org/10.1007/s10470-020-01748-0

    Article  Google Scholar 

  31. H.W. Sue, Y. Sun, Performance analysis and comparison of multiple loop feedback OTA-C filters. J. Circuits Syst. Comput. 14(4), 685–720 (2005)

    Article  Google Scholar 

  32. T. Unuk, E. Yuce, Supplementary DDCC+ based universal flter with grounded passive elements. Int. J. Electron. Commun. (AEÜ) 132, 153652 (2021). https://doi.org/10.1016/j.aeue.2021.153652

    Article  Google Scholar 

  33. S.F. Wang, H.P. Chen, Y. Ku, C.M. Yang, Independently tunable voltage-mode OTA-C biquadratic filter with five inputs and three outputs and its fully-uncoupled quadrature sinusoidal oscillator application. Int. J. Electron. Commun. AEÜ 110, 152822 (2019). https://doi.org/10.1016/j.aeue.2019.152822

    Article  Google Scholar 

  34. S.F. Wang, H.P. Chen, Y. Ku, C.M. Yang, A voltage-mode universal filter using five single-ended OTAs with two grounded capacitors and a quadrature oscillator using the voltage-mode universal filter. Optik 192, 162950 (2019). https://doi.org/10.1016/j.ijleo.2019.162950

    Article  Google Scholar 

  35. Z. Xie, J. Wu, An independent tuning current-reuse Gm-C complex biquad with high linearity. Microelectron. J. 106, 104922 (2020). https://doi.org/10.1016/j.mejo.2020.104922

    Article  Google Scholar 

  36. A. Yodtean, A. Thanachayanont, Sub 1-V highly-linear low-power class-AB bulk-driven tunable CMOS transconductor. Analog Integr. Circuits Signal Process. 75(3), 383–397 (2013). https://doi.org/10.1007/s10470-013-0044-8

    Article  Google Scholar 

  37. E. Yuce, S.H. Minaei, A new frst-order universal flter consisting of two ICCII+s and a grounded capacitor. Int. J. Electron. Commun. (AEÜ) 137, 153802 (2021). https://doi.org/10.1016/j.aeue.2021.153802

    Article  Google Scholar 

  38. S.M. Zanjani, M. Dousti, M. Dolatshahi, A CNTFET universal mixed-mode biquad active filter in subthreshold region. Int. J. RF Microw. Comput. Aided Eng. 28(9), 1–9 (2018). https://doi.org/10.1002/mmce.21574

    Article  Google Scholar 

  39. S.M. Zanjani, M. Dousti, M. Dolatshahi, Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology. IET Circuits Devices Syst. 12(6), 681–688 (2018). https://doi.org/10.1049/iet-cds.2018.5158

    Article  Google Scholar 

  40. S.M. Zanjani, M. Dousti, M. Dolatshahi, A new low-power, universal, multi-mode Gm-C filter in CNTFET technology. Microelectron. J. 90, 342–352 (2019). https://doi.org/10.1016/j.mejo.2019.01.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dolatshahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namdari, A., Dolatshahi, M. & Aghababaei Horestani, M. A New Ultra-Low-Power High-Order Universal OTA-C Filter Based on CMOS Double Inverters in the Subthreshold Region. Circuits Syst Signal Process 42, 6379–6398 (2023). https://doi.org/10.1007/s00034-023-02401-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02401-7

Keywords

Navigation