Skip to main content
Log in

Novel Affine Projection Sign SAF Against Impulsive Interference and Noisy Input: Algorithm Derivation and Convergence Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To enhance the convergence performance of the affine projection sign subband adaptive filter (AP-SSAF) algorithm under highly correlated inputs, the novel AP-SSAF (NAP-SSAF) algorithm was proposed through fully utilizing the decorrelation characteristic of SAF, which obtains quicker convergence behavior than the AP-SSAF algorithm. However, under unknown system identification, the estimation accuracy of the NAP-SSAF algorithm may unavoidably decrease when the input of the adaptive filter is contaminated by noise. To alleviate this issue, in this paper, we propose the bias-compensated NAP-SSAF (BC-NAP-SSAF) algorithm to alleviate the estimated bias through employing unbiasedness criterion. Benefiting from the unbiased criterion, the proposed BC-NAP-SSAF algorithm achieves an asymptotically unbiased estimation. Moreover, the convergence bounds of the proposed BC-NAP-SSAF algorithm in the mean and mean-square senses are provided to ensure stability, which are obtained by resorting to Price’s theorem along with some reasonable assumptions. The effectiveness of the derived theoretical convergence bounds is also corroborated. Finally, numerical simulations under system identification and acoustic echo cancellation applications demonstrate that the proposed BC-NAP-SSAF algorithm outperforms other algorithms in terms of estimation accuracy and tracking capability for noisy input under impulsive noise environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. T. An, T. Zhang, Z. Geng, H. Jiao, Normalized combinations of proportionate affine projection sign subband adaptive filter. Sci. Programm. (2021). https://doi.org/10.1155/2021/8826868

    Article  Google Scholar 

  2. Y. Chen, Y. Gu, A. O. Hero, Sparse LMS for system identification, in 2009 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3125–3128 (2009)

  3. Z. Chen, H. Zhao, X. Zeng, J. Jiang, Bias-compensated minimum error entropy algorithms with polynomial sparsity penalty constraints. IEEE Trans. Circuits Syst. II Exp. Briefs 67(12), 3537–3541 (2020)

    Google Scholar 

  4. H. Deng, M. Doroslovacki, Proportionate adaptive algorithms for network echo cancellation. IEEE Trans. Signal Process. 54(5), 1794–1803 (2006)

    Article  MATH  Google Scholar 

  5. Z. Jin, L. Guo, Y. Li, The bias-compensated proportionate NLMS algorithm with sparse penalty constraint. IEEE Access 8, 4954–4962 (2020)

    Article  Google Scholar 

  6. S. M. Jung, N. K. Kwon, P. Park, A bias compensated affine projection algorithm for noisy input data, in 2013 9th Asian Control Conference (ASCC), pp. 1–5 (2013)

  7. B. Kang, J. Yoo, P. Park, Bias-compensated normalised LMS algorithm with noisy input. Electron. Lett. 49(8), 538–539 (2013)

    Article  Google Scholar 

  8. K.A. Lee, W.S. Gan, Improving convergence of the NLMS algorithm using constrained subband updates. IEEE Signal Process. Lett. 11(9), 736–739 (2004)

    Article  Google Scholar 

  9. X. Liu, G. Shao, X. Qi, Improved subband adaptive filter and its application in echo cancellation. Chin. Signal Process. 32(8), 973–981 (2016)

    Google Scholar 

  10. Q. Liu, H. Zhao, Robust novel affine projection sign subband adaptive filter algorithm. Circuits Syst. Signal Process. 38(9), 4141–4161 (2019)

    Article  Google Scholar 

  11. D. Liu, H. Zhao, Bias-compensated sign subband adaptive filtering algorithm with individual-weighting-factors: performance analysis and improvement. Digit. Signal Process. 136, 103981 (2023)

    Article  Google Scholar 

  12. D. Liu, H. Zhao, Statistics behavior of individual-weighting-factors SSAF algorithm under errors-in-variables model. IEEE Signal Process. Lett. 30, 319–323 (2023)

    Article  Google Scholar 

  13. D. Liu, H. Zhao, X. He, L. Zhou, Polynomial constraint generalized maximum correntropy normalized subband adaptive filter algorithm. Circuits Syst. Signal Process 41, 2379–2396 (2022)

    Article  Google Scholar 

  14. L. Lu, H. Zhao, Adaptive combination of affine projection sign subband adaptive filters for modeling of acoustic paths in impulsive noise environments. Int. J. Speech Technol. 19, 907–917 (2016)

    Article  Google Scholar 

  15. W. Ma, J. Qiu, D. Zheng, Z. Zhang, X. Hu, Bias compensated normalized least mean fourth algorithm with correntropy induced metric constraint, in 2018 37th Chinese Control Conference (CCC), pp. 4217–4222 (2018)

  16. W. Ma, D. Zheng, Y. Li, Z. Zhang, B. Chen, Bias-compensated normalized maximum correntropy criterion algorithm for system identification with noisy input. Signal Process. 152, 160–164 (2018)

    Article  Google Scholar 

  17. W. Ma, D. Zheng, X. Tong, Z. Zhang, B. Chen, Proportionate NLMS with unbiasedness criterion for sparse system identification in the presence of input and output noises. IEEE Trans. Circuits Syst. II Exp. Briefs 65(11), 1808–1812 (2018)

    Google Scholar 

  18. W. Ma, D. Zheng, Z. Zhang, J. Duan, J. Qiu, X. Hu, Sparse-aware bias-compensated adaptive filtering algorithms using the maximum correntropy criterion for sparse system identification with noisy input. Entropy 20(6), 407 (2018)

    Article  Google Scholar 

  19. J. Ni, X. Chen, J. Yang, Two variants of the sign subband adaptive filter with improved convergence rate. Signal Process 96(PART B), 325–331 (2014)

    Article  Google Scholar 

  20. J. Ni, Y. Gao, X. Chen, J. Chen, Bias-compensated sign algorithm for noisy inputs and its step-size optimization. IEEE Trans. Signal Process. 69, 2330–2342 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Ni, F. Li, Variable regularization parameter sign subband adaptive filter. Electron. Lett. 46(24), 1605–1607 (2010)

    Article  Google Scholar 

  22. K. Ozeki, T. Umeda, An adaptive filtering algorithm using an orthogonal projection to an affine subspace and its properties. Electron. Commun. Jpn. 67(5), 19–27 (1984)

    Article  MathSciNet  Google Scholar 

  23. R. Price, A useful theorem for nolinear devices having Gaussian inputs. IRE Trans. Inf. Theory 6(6), 69–72 (1958)

    Article  MATH  Google Scholar 

  24. A.H. Sayed, Adaptive Filters (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  25. L. Shi, H. Zhao, Y. Zakharov, B. Chen, Y. Yang, Variable step-size widely linear complex-valued affine projection algorithm and performance analysis. IEEE Trans. Signal Process. 68, 5940–5953 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Shin, J. Yoo, P. Park, Variable step-size sign subband adaptive filter. IEEE Signal Process Lett. 20(2), 173–176 (2013)

    Article  Google Scholar 

  27. Vasundhara, Robust filtering employing bias compensated M-estimate affine-projection-like algorithm. Electron. Lett. 56(5), 241–242 (2020)

    Article  Google Scholar 

  28. H. Zhao, D. Liu, X. He, Bias-compensated sign subband adaptive filter algorithm with individual weighting factors for input noise. IEEE Trans. Circuits. Syst. II Exp. Briefs 69(3), 1872–1876 (2022)

    Google Scholar 

  29. H. Zhao, D. Liu, S. Lv, Robust maximum correntropy criterion subband adaptive filter algorithm for impulsive noise and noisy input. IEEE Trans. Circuits Syst. II Exp. Briefs. 69(2), 604–608 (2022)

    Google Scholar 

  30. H. Zhao, W. Xiang, X. He, Bias-compensated affine-projection-like algorithm based on maximum correntropy criterion for robust filtering. J. Frankl. Inst. 359(3), 1274–1302 (2022)

    Article  MATH  Google Scholar 

  31. H. Zhao, Z. Zheng, Bias-compensated affine-projection-like algorithms with noisy input. Electron. Lett. 52(9), 712–714 (2016)

    Article  Google Scholar 

  32. Z. Zheng, Z. Liu, X. Lu, Robust normalized subband adaptive filter algorithm against impulsive noises and noisy inputs. J. Frankl. Inst. 357(5), 3113–3134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Zheng, Z. Liu, H. Zhao, Bias-compensated normalized least-mean fourth algorithm for noisy input. Circuits Syst. Signal Process 36(9), 3864–3873 (2017)

    Article  Google Scholar 

  34. Z. Zheng, H. Zhao, Bias-compensated normalized subband adaptive filter algorithm. IEEE Signal Process. Lett. 23(6), 809–813 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part by National Natural Science Foundation of China (grant: 62171388, 61871461, 61571374) and in part by the Fundamental Research Funds for the Central Universities (Grant: 2682021ZTPY091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhao, H. Novel Affine Projection Sign SAF Against Impulsive Interference and Noisy Input: Algorithm Derivation and Convergence Analysis. Circuits Syst Signal Process 42, 6182–6209 (2023). https://doi.org/10.1007/s00034-023-02395-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02395-2

Keywords

Navigation