Skip to main content
Log in

A Sparse Array Direction-Finding Approach Under Impulse Noise

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

To address the issue that existing direction-finding approaches perform poorly under impulse noise and do not work well in underdetermined scenarios, a novel sparse array direction-finding approach on the background of impulse noise is proposed in this work. The approach introduces an infinite norm Gaussian kernel to restrain the impulse noise and obtains accurate estimates via the maximum likelihood algorithm. Meanwhile, a novel quantum transient search optimization (QTSO) algorithm is designed to solve the corresponding cost function. In addition, we prove the convergence of QTSO and derive the Cramér–Rao bound of sparse array direction finding in the presence of impulse noise. Compared with some traditional direction-finding approaches, the proposed approach shows excellent performance through simulation results in different schemes, which can also be a general framework to address other complex direction-finding problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. B.G. Byun, D.S. Yoo, Compuationally efficient propagator method for DoA with coprime array. J. Adv. Navig. Technol. 20(3), 258–264 (2016)

    Google Scholar 

  2. P. Chen, Z. Chen, B. Zheng, X. Wang, Efficient DOA estimation method for reconfigurable intelligent surfaces aided UAV swarm. IEEE Trans. Signal Process. 70, 743–755 (2022)

    MathSciNet  Google Scholar 

  3. K. Dervis, A. Bahriye, A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Y. Du, H. Gao, M. Chen, Direction of arrival estimation method based on quantum electromagnetic field optimization in the impulse noise. J. Syst. Eng. Electron. 32(3), 527–537 (2021)

    Google Scholar 

  5. H. Gao, M. Chen, Y. Du, A. Jakobsson, Monostatic MIMO radar direction finding in impulse noise. Digit. Signal Process. 3, 103198 (2021)

    Google Scholar 

  6. H. Gao, Y. Du, C. Li, Quantum fireworks algorithm for optimal cooperation mechanism of energy harvesting cognitive radio. J. Syst. Eng. Electron. 29(1), 18–30 (2018)

    Google Scholar 

  7. H. Gao, J. Li, M. Diao, Direction finding of bistatic MIMO radar based on quantum-inspired grey wolf optimization in the impulse noise. EURASIP J. Adv. Signal Process. 75, 1–14 (2018)

    Google Scholar 

  8. J. He, T. Shu, L. Li, T.-K. Truong, Mixed near-field and far-field localization and array calibration with partly calibrated arrays. IEEE Trans. Signal Process. 70, 2105–2118 (2022)

    MathSciNet  Google Scholar 

  9. J. He, L. Li, T. Shu, Sparse nested arrays with spatially spread square acoustic vector sensors for high-accuracy underdetermined direction finding. IEEE Trans. Aerosp. Electron. Syst. 57(4), 2324–2336 (2021)

    Google Scholar 

  10. J. He, Z. Liu, K.T. Wong, Snapshot-instantaneous \(\Vert \cdot \Vert _{infin}\) normalization against heavy-tail noise. IEEE Trans. Aerosp. Electron. Syst. 44(3), 1221–1227 (2008)

    Google Scholar 

  11. J. He, L. Li, T. Shu, 2-D direction finding using parallel nested arrays with full co-array aperture extension. Signal Process. 178, 107795 (2021)

    Google Scholar 

  12. J. Kenndey, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE International Conference on Neural Networks, vol. 1995, pp. 1942–1948 (1995)

  13. P. Li, J. Li, G. Zhao, Low complexity DOA estimation for massive UCA with single snapshot. J. Syst. Eng. Electron. 33(1), 22–27 (2022)

    Google Scholar 

  14. W. Li, W. Liao, A. Fannjiang, Super-resolution limit of the ESPRIT algorithm. IEEE Trans. Inf. Theory. 66(7), 4593–4608 (2020)

    MathSciNet  MATH  Google Scholar 

  15. X. Li, J. Sun, L. Jin et al., Bi-parameter CGM model for approximation of \(\alpha \)-stable PDF. Electron. Lett. 44(18), 1096–1098 (2008)

    Google Scholar 

  16. J. Li, Y. He, P. Ma et al., Direction of arrival estimation using sparse nested arrays with coprime displacement. IEEE Sens. J. 21(4), 5282–5291 (2020)

    Google Scholar 

  17. T. Liu, J.M. Mendel, A subspace-based direction-finding algorithm using fractional lower order statistics. IEEE Trans. Signal Process. 49(8), 1605–1613 (2001)

    MathSciNet  MATH  Google Scholar 

  18. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    MathSciNet  MATH  Google Scholar 

  19. X. Ma, C.L. Nikias, Joint estimation of time delay and frequency delay in impulsive noise using fractional lower order statistics. IEEE Trans. Signal Process. 44(1), 2669–2687 (1996)

    Google Scholar 

  20. M. Meller, K. Stawiarski, On DOA estimation for rotating arrays using stochastic maximum likelihood approach. IEEE Trans. Signal Process. 68, 5219–5229 (2020)

    MathSciNet  MATH  Google Scholar 

  21. P. Pal, P.P. Vaidyanathan, Nested arrays: a novel approach to array processing with enhanced degrees of freedom. IEEE Trans. Signal Process. 58(8), 4167–4181 (2010)

    MathSciNet  MATH  Google Scholar 

  22. P. Pal, P.P. Vaidyanathan, Coprime sampling and the music algorithm, in 2011 Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), pp. 289–294 (2011)

  23. P. Pal, P.P. Vaidyanathan, Multiple level nested array: an efficient geometry for \(2q\)th order cumulant based array processing. IEEE Trans. Signal Process. 60(3), 1253–1269 (2012)

    MathSciNet  MATH  Google Scholar 

  24. R.K. Patra, A.S. Dhar, A novel nested array for real-valued sources exploiting array motion. IEEE Signal Process. Lett. 28, 1375–1379 (2021)

    Google Scholar 

  25. C. Peng, Z. Yang, Z. Chen, Z. Guo, Reconfigurable intelligent surface aided sparse DOA estimation method with non-ULA. IEEE Signal Process. Lett. 28, 2023–2027 (2021)

    Google Scholar 

  26. M.H. Qais, H.M. Hasanien, S. Alghuwainem, Transient search optimization: a new meta-heuristic optimization algorithm. Appl. Intell. 50, 3926–3941 (2020)

    Google Scholar 

  27. R. Roy, T. Kailath, ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal Process. 37(7), 984–995 (1989)

    MATH  Google Scholar 

  28. I. Santamaria, P.P. Pokharel, J.C. Principe, Generalized correlation function: definition, properties, and application to blind equalization. IEEE Trans. Signal Process. 54(6), 2187–2197 (2006)

    MATH  Google Scholar 

  29. O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Google Scholar 

  30. Q. Si, Y. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1377–1390 (2015)

    MathSciNet  MATH  Google Scholar 

  31. P. Stoica, A.B. Gershman, Maximum-likelihood DOA estimation by data-supported grid search. IEEE Signal Process. Lett. 6(10), 273–275 (1999)

    Google Scholar 

  32. A. Swindlehurst, M. Viberg, Subspace fitting with diversely polarized antenna arrays. IEEE Trans. Antennas Propag. 41(12), 1687–1694 (2002)

    Google Scholar 

  33. Z. Tian, Beamspace iterative quadratic WSF for DOA estimation. IEEE Signal Process. Lett. 10(6), 176–179 (2003)

    Google Scholar 

  34. P. Tsakalides, C.L. Nikias, The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments. IEEE Trans. Signal Process. 44(7), 1623–1633 (1996)

    Google Scholar 

  35. P.P. Vaidyanathanand, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    MathSciNet  MATH  Google Scholar 

  36. M. Wagner, Y. Park, P. Gerstoft, Gridless DOA estimation and root-MUSIC for non-uniform linear arrays. IEEE Trans. Signal Process. 69, 2144–2157 (2021)

    MathSciNet  MATH  Google Scholar 

  37. L. Wan, K. Liu, Y. Liang, T. Zhu, DOA and polarization estimation for non-circular signals in 3-D millimeter wave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 20(5), 3152–3167 (2021)

    Google Scholar 

  38. C. Wang, L. Ai, F. Wen et al., An improved PARAFAC estimator for 2D-DOA estimation using EMVS array. Circ. Syst. Signal Process. 41, 147–165 (2022)

    MATH  Google Scholar 

  39. Z. Wang, D. Wang, B. Bai et al., Direction finding algorithm of correlated interferometer based on genetic algorithm with high degree of stretching. J. Syst. Eng. Electron. 40(1), 39–44 (2018)

    Google Scholar 

  40. X. Wang, M. Lu, S. Wei et al., Multi-objective optimization based optimal setting control for industrial double-stream alumina digestion process. J. Cent. South Univ. 29, 173–185 (2022)

    Google Scholar 

  41. F. Wen, G. Gui, H. Gacanin, H. Sari, Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. (2022). https://doi.org/10.1109/TWC.2022.3215965

    Article  Google Scholar 

  42. Z. Weng, P.M. Djuri, A search-free DOA estimation algorithm for coprime arrays. Digit. Signal Process. 24, 27–33 (2014)

    Google Scholar 

  43. X. Yan, G. Liu, H. Wu et al., Robust modulation classification over \(\alpha \)-stable noise using graph-based fractional lower-order cyclic spectrum analysis. IEEE Trans. Veh. Technol. 69(3), 2836–2849 (2020)

    Google Scholar 

  44. G. Yang, J. Wang, G. Zhang et al., Joint estimation of timing and carrier phase offsets for MSK signals in alpha-stable noise. IEEE Commun. Lett. 22(1), 89–92 (2018)

    Google Scholar 

  45. G. You, T. Qiu, Y. Zhu, A novel extended fractional lower order cyclic MUSIC algorithm in impulsive noise. ICIC Express Lett. 6(9), 2371–2376 (2012)

    Google Scholar 

  46. Z. Zheng, Y. Huang, W. Wang et al., Direction-of-arrival estimation of coherent signals via coprime array interpolation. IEEE Signal Process. Lett. 27(99), 585–589 (2020)

    Google Scholar 

  47. Z. Zheng, Y. Huang, W.-Q. Wang, H.C. So, Augmented covariance matrix reconstruction for DOA estimation using difference coarray. IEEE Trans. Signal Process. 69, 5345–5358 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 62073093), the postdoctoral science research developmental fund of in Heilongjiang Province (Grant LBH-Q19098), and the Heilongjiang Provincial Natural Science Foundation of China (Grant LH2020F017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyuan Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

To prove the boundness of the complex matrix \(\mathbf{{R}}\) with the component \({R_{ij}}\) \((i,j = 1,2, \ldots ,M)\), we can prove the boundness of \({{\text {Re}}} \{ {R_{ij}}\} \) and \({{\text {Im}}} \{ {R_{ij}}\} \) as follows:

$$\begin{aligned} \begin{aligned} {{\text {Re}}} \{ {R_{ij}}\}&=\mathrm{{ Re}}\left\{ {\frac{1}{L}\sum \limits _{l = 1}^L {{z_i}(l)z_j^*(l)\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } } \right\} \\&=\frac{1}{L}\sum \limits _{l = 1}^L {{{\text {Re}}} \left\{ {{z_i}(l)z_j^*(l)\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } \right\} } \\&\le \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)z_j^*(l)\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } \right|} \right\} } \\&\le \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)} \right|\left|{{z_j}(l)} \right|\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } \right\} } \\&\le \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)} \right|\left|{{z_j}(l)} \right|} \right\} } \\&=\frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\frac{{\left|{{y_i}(l)} \right|}}{{\max \{ |{y_1}(l)|,|{y_2}(l)|, \ldots ,|{y_M}(l)|\} }}} \right. } \\&\quad \times \left. {\frac{{\left|{{y_j}(l)} \right|}}{{\max \{ |{y_1}(l)|,|{y_2}(l)|, \ldots ,|{y_M}(l)|\} }}} \right\} \\&\le \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{\frac{{{y_i}(l)}}{{{y_i}(l)}}} \right|\times \left|{\frac{{{y_j}(l)}}{{{y_j}(l)}}} \right|} \right\} } = 1 \end{aligned} \end{aligned}$$
(A1)
$$\begin{aligned} \begin{aligned} {{\text {Re}}} \{ {R_{ij}}\}&\ge - \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)} \right|\left|{z_j^*(l)} \right|\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } \right\} } \\&\ge - \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)} \right|\left|{{z_j}(l)} \right|\exp \left( { - \eta |{z_i}(l) - \mu z_j^*(l)|} \right) } \right\} } \\&\ge - \frac{1}{L}\sum \limits _{l = 1}^L {\left\{ {\left|{{z_i}(l)} \right|\left|{{z_j}(l)} \right|} \right\} } \\&\ge - 1 \end{aligned} \end{aligned}$$
(A2)

Thus, \(- 1 \le {{\text {Re}}} \{ {R_{ij}}\} \le 1\). Similarly, \(- 1 \le {{\text {Im}}} \{ {R_{ij}}\} \le 1\). In this case, \(\mathbf{{R}}\) is also bounded.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, H., Liu, Y. et al. A Sparse Array Direction-Finding Approach Under Impulse Noise. Circuits Syst Signal Process 42, 5579–5601 (2023). https://doi.org/10.1007/s00034-023-02377-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02377-4

Keywords

Navigation