Skip to main content
Log in

Improved Gravitational Search and Gradient Iterative Identification for Multivariable Hammerstein Time-Delay Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Multivariable Hammerstein time-delay (MHTD) systems have been widely used in a variety of complex industrial systems; thus, it is of great significance to identify the parameters of such systems. The MHTD system is difficult to identify due to its inherent complexity. As one of heuristic algorithms, the gravitational search algorithm is suitable for identifying such complex models, but it has the problem of easily falling into local optimum. Therefore, this paper combines the improved chaotic gravitational search algorithm (ICGSA) and gradient iterative (GI) algorithm and proposes an ICGSA–GI algorithm to overcome the shortcomings of the above two algorithms. Then, we use it to identify the unknown parameters of the MHTD systems. Finally, a numerical example and an application case are given for validating the feasibility of the three identification methods. The results demonstrate that the three algorithms can identify the unknown parameters of the MHTD system effectively. In addition, by comparing with ICGSA and GI algorithms, this paper confirms that the ICGSA–GI algorithm behaves better than ICGSA and GI algorithm in identification accuracy, and the convergence speed of the ICGSA–GI algorithm is faster than that of the GI algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. B.M. Al-Hadithi, A. Jiménez, J.P. Oria, New incremental Takagi-Sugeno state model for optimal control of multivariable nonlinear time delay systems. Eng. Appl. Artif. Intell. 45, 259–268 (2015)

    Google Scholar 

  2. S.M. Boopalan, S. Alagala, A new affine projection algorithm with adaptive \(l_0\)-norm constraint for block-sparse system identification. Circuits Syst. Signal Process. (2022). https://doi.org/10.1007/s00034-022-02197-y

    Article  Google Scholar 

  3. Y. Cao, Y.R. Yang, L.C. Ma, J.K. Wen, Research on virtual coupled train control method based on GPC & VAPF. Chin. J. Electron. 31(5), 897–905 (2022)

    Google Scholar 

  4. G. Chekib, R. Zeineb, B.B. Naceur, Robust stabilization and tracking control schemes for disturbed multi-input multi-output Hammerstein model in presence of approximate polynomial nonlinearities. Proc. Inst. Mech. Eng. I J. Syst. Control Eng. 235(7), 1245–1257 (2021)

    Google Scholar 

  5. J. Chen, B. Huang, M. Gan, C.L.P. Chen, A novel reduced-order algorithm for rational models based on Arnoldi process and Krylov subspace. Automatica 129, 109663 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Y.F. Chen, C. Zhang, C.Y. Liu, Y.M. Wang, X.K. Wan, Atrial fibrillation detection using a feedforward neural network. J. Med. Biol. Eng. 42(1), 63–73 (2022)

    Google Scholar 

  7. J. Chen, Q.M. Zhu, Multi-step-length gradient iterative algorithm for equation-error type models. Syst. Control Lett. 115, 15–21 (2018)

    MathSciNet  MATH  Google Scholar 

  8. J. Chen, Q.M. Zhu, Y.J. Liu, Modified Kalman filtering based multi-step-length gradient iterative algorithm for ARX models with random missing outputs. Automatica 118, 109034 (2020)

    MathSciNet  MATH  Google Scholar 

  9. F. Ding, Least squares and multi-innovation least squares methods. J. Comput. Appl. Math. 426, 115107 (2023)

    MATH  Google Scholar 

  10. F. Ding, T.W. Chen, Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 40(10), 1739–1748 (2004)

    MathSciNet  MATH  Google Scholar 

  11. F. Ding, T.W. Chen, Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 50(9), 1436–1441 (2005)

    MathSciNet  MATH  Google Scholar 

  12. J. Ding, F. Ding, X.P. Liu, G. Liu, Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011)

    MathSciNet  MATH  Google Scholar 

  13. F. Ding, X.M. Liu, H.B. Chen, G.Y. Yao, Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 97, 31–39 (2014)

    Google Scholar 

  14. F. Ding, H. Ma, J. Pan, E.F. Yang, Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation. J. Frankl. Inst. 358(9), 5113–5135 (2021)

    MathSciNet  MATH  Google Scholar 

  15. F. Ding, L. Xu, X. Zhang, Filtered auxiliary model recursive generalized extended parameter estimation methods for Box–Jenkins systems. Int. J. Robust Nonlinear Control (2023). https://doi.org/10.1002/rnc.6657

    Article  Google Scholar 

  16. F.Z. Geng, X.Y. Wu, A novel kernel functions algorithm for solving impulsive boundary value problems. Appl. Math. Lett. 134, 108318 (2022)

    MathSciNet  MATH  Google Scholar 

  17. F.Z. Geng, X.Y. Wu, Reproducing kernel-based piecewise methods for efficiently solving oscillatory systems of second-order initial value problems. Calcolo 60(2), 20 (2023)

    MathSciNet  MATH  Google Scholar 

  18. Y. Ji, A.N. Jiang, Filtering-based accelerated estimation approach for generalized time-varying systems with disturbances and colored noises. IEEE Trans. Circuits Syst. II Express Briefs 70(1), 206–210 (2023)

    Google Scholar 

  19. Y. Ji, Z. Kang, Three-stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems. Int. J. Robust Nonlinear Control 31(3), 971–987 (2021)

    MathSciNet  Google Scholar 

  20. Y. Ji, Z. Kang, X.M. Liu, The data filtering based multiple-stage Levenberg-Marquardt algorithm for Hammerstein nonlinear systems. Int. J. Robust Nonlinear Control 31(15), 7007–7025 (2021)

    MathSciNet  Google Scholar 

  21. Y. Ji, C. Zhang, Z. Kang, T. Yu, Parameter estimation for block-oriented nonlinear systems using the key term separation. Int. J. Robust Nonlinear Control 30(9), 3727–3752 (2020)

    MathSciNet  MATH  Google Scholar 

  22. A.N. Jiang, Y. Ji, L.J. Wan, Iterative parameter identification algorithms for the generalized time-varying system with a measurable disturbance vector. Int. J. Robust Nonlinear Control 32(6), 3527–3548 (2022)

    Google Scholar 

  23. Z. Kang, Y. Ji, X.M. Liu, Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output-error systems. Int. J. Adapt. Control Signal Process. 35(11), 2276–2295 (2021)

    Google Scholar 

  24. J.M. Li, A novel nonlinear optimization method for fitting a noisy Gaussian activation function. Int. J. Adapt. Control Signal Process. 36(3), 690–707 (2022)

    Google Scholar 

  25. M.H. Li, X.M. Liu, The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 33(7), 1189–1211 (2019)

    MathSciNet  MATH  Google Scholar 

  26. M.H. Li, X.M. Liu, Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 35(10), 2056–2074 (2021)

    MathSciNet  Google Scholar 

  27. M.H. Li, X.M. Liu, Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 35(2), 240–261 (2021)

    MathSciNet  Google Scholar 

  28. X.Y. Li, B.Y. Wu, A kernel regression approach for identification of first order differential equations based on functional data. Appl. Math. Lett. 127, 107832 (2022)

    MathSciNet  MATH  Google Scholar 

  29. J.H. Li, J.L. Zhang, Maximum likelihood identification of dual-rate Hammerstein output-error moving average system. IET Control Theory Appl. 14(8), 1089–1101 (2020)

    MathSciNet  Google Scholar 

  30. J.H. Li, T.C. Zong, G.P. Lu, Parameter identification of Hammerstein–Wiener nonlinear systems with unknown time delay based on the linear variable weight particle swarm optimization. ISA Trans. 120, 89–98 (2022)

    Google Scholar 

  31. H. Ma, J. Pan, W. Ding, Partially-coupled least squares based iterative parameter estimation for multi-variable output-error-like autoregressive moving average systems. IET Control Theory Appl. 13(18), 3040–3051 (2019)

    MathSciNet  Google Scholar 

  32. J.X. Ma, W.L. Xiong, J. Chen, Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter. IET Control Theory Appl. 11(6), 857–869 (2017)

    MathSciNet  Google Scholar 

  33. H.R. Marzban, Parameter identification of a class of nonlinear multidelay systems with piecewise constant delays. Asian J. Control 24(1), 367–376 (2022)

    MathSciNet  Google Scholar 

  34. S. Mete, S. Ozer, H. Zorul, System identification using Hammerstein model optimized with differential evolution algorithm. AEU Int. J. Electron. Commun. 70(12), 1667–1675 (2016)

    Google Scholar 

  35. H. Mittal, R. Pal, A. Kulhari, Chaotic Kbest gravitational search algorithm (CKGSA), in Ninth International Conference on Contemporary Computing, pp. 1–6 (2016)

  36. J. Pan, X. Jiang, X.K. Wan, W.F. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. 15(3), 1189–1197 (2017)

    Google Scholar 

  37. J. Pan, S.D. Liu, J. Shu, X.K. Wang, Hierarchical recursive least squares estimation algorithm for secondorder Volterra nonlinear systems. Int. J. Control Autom. Syst. 20(12), 3940–3950 (2022)

    Google Scholar 

  38. J. Pan, H. Ma, X. Zhang, Q.Y. Liu, F. Ding, Y.F. Chang, J. Sheng, Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises. IET Signal Process. 14(7), 455–466 (2020)

    Google Scholar 

  39. S. Selvanathan, A.K. Tangirala, Time-delay estimation in multivariate systems using Hilbert transform relation and partial coherence functions. Chem. Eng. Sci. 65(2), 660–674 (2010)

    Google Scholar 

  40. Z.W. Shi, H.D. Yang, M. Dai, The data-filtering based bias compensation recursive least squares identification for multi-input single-output systems with colored noises. J. Frankl. Inst. 360(7), 4753–4783 (2023)

    MathSciNet  MATH  Google Scholar 

  41. J.L. Sun, X.G. Liu, A novel APSO-aided maximum likelihood identification method for Hammerstein systems. Nonlinear Dyn. 73(1–2), 449–462 (2013)

    MathSciNet  MATH  Google Scholar 

  42. L.J. Wan, Decomposition and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 38(7), 2971–2991 (2019)

    Google Scholar 

  43. D.Q. Wang, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355–356, 237–248 (2016)

    MATH  Google Scholar 

  44. D.Q. Wang, Q.H. Fan, Y. Ma, An interactive maximum likelihood estimation method for multivariable Hammerstein systems. J. Frankl. Inst. 357(17), 12986–13005 (2020)

    MathSciNet  MATH  Google Scholar 

  45. H. Wang, H. Fan, J. Pan, A true three-scroll chaotic attractor coined. Discrete Contin. Dyn. Syst. Ser. B 27(5), 2891–2915 (2022)

    MathSciNet  MATH  Google Scholar 

  46. H.J. Wang, G.Y. Ke, G.L. Dong, Q.F. Su, J. Pan, Singularly degenerate heteroclinic cycles with nearby apple-shape attractors. Int. J. Bifurc. Chaos 33(1), 2350011 (2023)

    MathSciNet  Google Scholar 

  47. Y.J. Wang, M.H. Wu, Recursive parameter estimation algorithm for multivariate output-error systems. J. Frankl. Inst. 355(12), 5163–5181 (2018)

    MathSciNet  MATH  Google Scholar 

  48. L. Xu, Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 41(2), 805–830 (2022)

    MathSciNet  MATH  Google Scholar 

  49. L. Xu, Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int. J. Control Autom. Syst. 20(2), 432–443 (2022)

    MathSciNet  Google Scholar 

  50. L. Xu, F.Y. Chen, T. Hayat, Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 35(5), 676–693 (2021)

    Google Scholar 

  51. L. Xu, F. Ding, E.R. Yang, Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 31(1), 148–165 (2021)

    MathSciNet  Google Scholar 

  52. L. Xu, G.L. Song, A recursive parameter estimation algorithm for modeling signals with multi-frequencies. Circuits Syst. Signal Process. 39(8), 4198–4224 (2020)

    MATH  Google Scholar 

  53. J.Y. You, Y.J. Liu, J. Chen, Iterative identification for multiple-input systems with time-delays based on greedy pursuit and auxiliary model. J. Frankl. Inst. 356(11), 5819–5833 (2019)

    MathSciNet  MATH  Google Scholar 

  54. X. Zhang, Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 51(2), 275–290 (2020)

    MathSciNet  MATH  Google Scholar 

  55. X. Zhang, State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors. Int. J. Adapt. Control Signal Process. 33(7), 1157–1173 (2019)

    MathSciNet  MATH  Google Scholar 

  56. X. Zhang, Recursive identification of bilinear time-delay systems through the redundant rule. J. Frankl. Inst. 357(1), 726–747 (2020)

    MathSciNet  MATH  Google Scholar 

  57. T.C. Zong, J.H. Li, G.P. Lu, Auxiliary model-based multi-innovation PSO identification for Wiener–Hammerstein systems with scarce measurements. Eng. Appl. Artif. Intell. 106, 104470 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61973176, 61973178, U2066203) and the Qinglan Project of Jiangsu Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Song, W., Jiang, Y. et al. Improved Gravitational Search and Gradient Iterative Identification for Multivariable Hammerstein Time-Delay Systems. Circuits Syst Signal Process 42, 5161–5186 (2023). https://doi.org/10.1007/s00034-023-02361-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-023-02361-y

Keywords

Navigation